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Fig. 1. Popular visualization images queried on Google Image with keywords
‘data visualization’ (top), and ‘information visualization’ (bottom). Over 50%
of them do not have a color legend.

1 BACKGROUND

Color is a vital visual channel that helps users effectively acquire
information from visualizations. Most, if not all, visualizations
employ a colormap, which is essentially a mapping function f :
D — C that maps data values D to colors from the color scale
C. To facilitate community, it is a good practice to incorporate
a visualization with the colormap that produces it. Yet, many
real-world visualizations do not come up with an explicit color
legend. We queried on Google Image search engine with keywords
‘data visualization’, and ‘information visualization’. The results are
presented in Fig. 1, where visualizations with a color legend are
marked green, and the others are marked red. Here, only 7/14 data
visualizations, and 7/18 information visualizations have a color
legend. Actually, queries with ‘scientific visualization’ produce
even worse numbers. Without an explicit color legend, it would
be rather challenging to transfer colormap design from anesthetic
visualizations. This motivates us to develop an automatic approach

to extract colormaps from visualization images. We consider a
basic requirement for the tool is to work for visualizations with &
without color legend.
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Fig. 2. Number of data distribution against number of attributes in the range
[1, 15] in Rdatasets.

We consider the following three perspectives when synthesizing
visualization images.

e Data. We utilize a subset of real-world data collected by
Rdataset. Fig. 2 presents the number of data distribution
against number of attributes in the range [1, 15] in Rdatasets.
Here, we employ data with one or two attributes to
cope with continuous colormaps, while those with 3 - 10
attributes for discrete colormaps. We omits data with more
than 10 attributes as they are rare, and we find very few
discrete colormaps with over 10 colors.

e Chart type. We consider these popular charts: {line chart,
pie chart, grouped bar chart, stacked bar chart, scatter plot,
stream graph, heat map, choropleth map}. Heat map and
choropleth map are color coded with continuous colormaps,
while the other are with discrete colormaps.

e Colormap. We collect in total 236 — 54 continuous and
182 discrete colormaps. Specifically, the number of discrete
colormaps are 38, 38, 38, 38, 10, 10, 6, 4 for number
of colors from 3 to 10; and the number of continuous
colormaps are 2 for cyclical, 8 for single-hue, 22 for multi-
hue, and 22 for diverging colors.

Fig. 3 presents an overview of number of synthetic charts
produced by discrete colormaps of different color numbers. To
ensure the model is unbiased by chart types, we keep balanced
total number of charts for each chart type.
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of different color numbers.
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Fig. 4. Comparisons of network input as 2D map concatenation of HSL
histogram (green) vs. Lab histogram and prediction colormaps of size 1 x 256
(orange) vs. Lab histogram and prediction colormaps of size 10 x 256 (blue).
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3 AsLATION STUDY

Ablation analysis. Besides the models presented in the paper, we
train more deep neural network models of i) conversion to HSL
instead of Lab color space, and ii) prediction colormaps in different
output size of 1 x 256 instead of 10 x 256. All other hyperparameter
settings employed in the networks are the same. Fig. 4 presents
the comparison results. We can notice that the training loss are
almost the same that eventually converge to around 0.50 x 1073
after iteration 10,000. In consideration of perception uniformity,
we select the Lab color space; to make more color samples for the
refinement process, we opt to set output size as 10 x 256.

Regression or classification. In the paper, we train the CNN as
a regression model whose output is a 10 x 256 x 3 array and loss
function is the mean squared error loss. An alternative approach is
to frame the problem as a multi-class classification task and directly
categorize input histograms into classes of colormaps. To compare
these two options, we also train a classification CNN model with
the same input, network architecture, and hyperparameters as the
regression model. We change loss function to the cross-entropy loss,
and the output to a 1 x 236 vector that indicates the probability of
the input histogram being one of the 236 colormaps in the training
dataset. We evaluate its performance on the synthetic testing and
real seen visualizations, except for real unseen visualizations. The
classification model achieves an accuracy of 94.98% and 34.13%
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Fig. 5. Comparing Dy;,, generated by the regression model (our method) and
classification model. The regression model achieves smaller D, for real
visualizations.
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Fig. 6. Comparing Dy, generated by Palette [1] on number of colors in
discrete colormaps, Sequence [4] on categories of continuous colormaps,
and Ours on all cases.
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on the synthetic testing and real seen visualizations, respectively.

To further compare the regression and classification approaches,
we calculate their DTW distances (denoted as Dg,,) between
ground truths and extracted colormaps by each method. The results
are shown in Fig. 5. Overall, the classification model performs
better on synthetic testing visualizations, but it is inferior to
the regression model on real seen visualizations. Specifically,
both approaches produce satisfactory results for synthetic test-
ing visualizations, yet the classification model is slightly more
accurate and stable, especially for discrete colormaps. However,
for real visualizations, the classification model has a significantly
(t=2.99,p <0.01) larger Dy, (1 = 0.239,19,0.27]) than that of the
regression model (4 = 0.14( 13 9.15)) for discrete colormaps, and a
significantly (r = 3.45, p < 0.001) larger Dy (1 = 0.20j0.15,0.25))
than that of the regression model (1t = 0.119.19,0.12)) for continuous
colormaps. After examining the classifier’s predictions on real
visualizations, we find that it often predicts a discrete colormap
whilst the ground truth is a continuous colormap, and vice
versa. The classifier sometimes even predicts a colormap with
a different color scheme of that in the ground-truth colormap.
A possible reason is that real-world visualizations feature noisy
color histograms, which can be easily caused by many practices
such as changing image resolutions and opacity. Moreover, the
classification model can never categorize unseen colormaps that are
not in the training dataset, such as those real unseen visualizations.
In this sense, the regression model is more robust and generalizable.
Hence, we adopt the regression model as our approach.

4 MoRe QUANTITATIVE EXPERIMENTS

4.1 Comparison with Palette-Based and Sequence-
Preserving Methods

We further evaluate our method against palette-based [1] and
sequence-preserving [4] methods by comparing their performances
on number of colors in discrete colormaps, and different categories
of continuous colormaps. The results are presented in Fig. 6.
Overall, our method outperforms both palette-based [1] and
sequence-preserving [4] methods significantly. Besides, we find
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Fig. 7. Comparing D, generated by our method and the legend-based [3]
method on real-world visualizations with explicit legends.

that performance of our method drops when the number of colors
increases for discrete colormaps, while palette-based [1] method
almost remains the same. Through a deep probe, we observe that
the network tends to predict discrete colormaps as continuous
ones when the number of color increases; see examples in Fig. 8.
For continuous colormaps, we notice that our method performs
consistently across different colormap categories. In contrast, the
performance of sequence-preserving [4] method reduces when the
number of hues increases from single-hue to cyclical colormaps.
This is because it is difficult for sequence-preserving [4] method
to arrange colors in a correct ordering if there are many hues.
We also find that it is easier for our network to predict continuous
colormaps than discrete colormaps. Here, a possible reason is that in
our colormap corpus, there are several discrete colormaps with the
same color scheme (e.g., RAYIBu or BuGn) but different numbers
of colors (e.g., 4 or 5). The network sometimes messes up these
similar discrete colormaps for a visualization whose underlying
data distribution is unbalanced.

4.2 Comparison with Legend-Based Method

Poco et al. [3] propose a five-stage pipeline to extract colormaps
based on legends. We also conduct a quantitative comparison with
this legend-based method [3] on a dataset of real-world visualiza-
tions with explicit legends. We first select such visualizations from
our collected real seen and real unseen visualizations, obtaining 61
visualizations with seen colormaps and 87 with unseen colormaps.
Then, following the practice in [3], we manually crop the legend
regions for each visualization. Finally, we re-implement the color
extraction method as described in the paper to recover colormaps
from the legend regions.

We measure Dg,, between the extracted and ground-truth
colormaps. The comparison result with our method is shown in
Fig. 7. Here, our method performs equally or better than legend-
based [3] method on the real seen dataset. On real unseen dataset,
our method works better for continuous colormaps but worse for
discrete colormaps. In more details,

o Discrete colormaps. Though no significance is observed
between our and legend-based [3] method on real seen
visualizations (t = —0.95, p = 0.34), our method reduces
mean Dyy,, from 0.26(9.16,0.35) to 0.19).16,0.23)- We notice
that the performance of the DBSCAN algorithm used in [3]
is largely influenced by image resolution. Low-resolution
visualizations can result in repeated or unexpected colors in
the colormaps extracted by [3]. Our method alleviates this
effect by utilizing a CNN model to predict an intermediate
colormap before clustering, see Sec. 7.1 in the paper.
However, our method has a larger Dy, (1t = 0.26[9.22,0.31])
than that of [3] (4 = 0.11}g05,.17)), and the difference is
significant (r = 3.7, p = 0.001) on real unseen colormaps.
This is because the network has never seen some colors

3

in the unseen colormaps, especially in some uncommon
colormaps.

e Continuous colormaps. Our method outperforms the
legend-based method [3] with mean D, reduced from
0.33(0.28,0.38) to 0.12)9.10,0.14) On real seen dataset (f =
—6.0,p < 0.0001), from 0.29/924,0.34) t0 0.20g 17,023 on
real unseen dataset ( = —2.5, p = 0.01). Here, [3] recovers
continuous color legends by flood-filling pixels within a
black border. The algorithm can easily fail to detect the
whole legend area if a black border does not exist or is not
distinct from the background.

Moreover, our method has another advantage of requiring no
explicit color legends, as the method works on the color histogram
domain. On the other hand, the legend-based method [3] can extract
more information including color values. In together, ours and [3]
can complement each other in supporting more general cases.

5 QuaALITaTIVE EXAMPLES

Fig. 8 presents more results produced by our CNN model from the
synthetic dataset. The left column presents four good examples of
discrete colormaps. The chart types cover scatter plot, bar chart, line
chart, and stream graph, while the colormaps include single-hue,
diverging, and categorical types. Notice that the line chart (Example
1-3) is encoded with grayscale discrete colormaps, and the CNN
successfully predicts a good result that can be refined. The middle
column presents four good examples of continuous colormaps. The
results are very similar to the ground truth colormaps. Nevertheless,
our method may fail, as demonstrated by the four examples in
the right column. Here, we find that a main reason is unbalanced
data distributions (Examples 3-1, 3-3, 3-4). We also notice that
the network tends to predict continuous colormaps for single-hue
discrete colormaps, especially when the colormap contains over 7
colors (Example 3-2).

Fig. 9 presents some results produced by our model for
real-world visualizations with seen colormaps from the Internet
and the study of Poco et al. [3] (highlighted with red boxes).
Many predicted colormaps can be refined to generate the correct
colormaps. Yet, some predictions are rather noisy (Example 1-4,
2-4), as the visualizations contain overlapping circles, making a
big change in the color histogram that is not learned by our model.

Fig. 10 shows some CNN predictions for real-world visualiza-
tions with unseen colormaps. We notice that the network tends
to predict a similar colormap from those in the training dataset.
For example, prediction for Example 1-1 is in our dataset, but it
misses some green colors in the ground truth. Some predictions
only capture partial colors of the ground truth, e.g., Examples 1-2,
1-3, 1-4. This is probably because the underlying data are skewed,
and some colors in the ground truth are not fully utilized. Some
extracted colormaps are quite close to the ground truth with small
hue differences, e.g., Examples 2-1, 2-2, 2-3, and 2-4. These ground-
truth colormaps can be easily created by connecting certain color
paths in the color space [2], but are not available in the libraries
we harvested. The unseen discrete colormaps in Examples 3-1, 3-2,
3-3, and 3-4 use partial or additional colors of common discrete
colormaps in our dataset. Our model produces noisy predictions,
some of which can be corrected using the refinement module.
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Fig. 8. Example colormap results extracted by our CNN model from the synthetic visualizations: good examples for discrete colormaps (left), good examples
for continuous colormaps (middle), and bad examples for both discrete and continuous colormaps (right).
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Fig. 9. Example colormap results extracted by our CNN model for the real-world visualizations with seen colormaps, collected either from the Internet or the
prior study of Poco et al. [3] (highlighted with red boxes). Colormaps predicted by our CNN model are presented underneath the visualization images.



IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS

Example 1-1

Example 2-1

Example 3-1

U.S. County Area Choropleth (log scale)

Groater 011
Sourc: Tablo GSSO2EW, Consus 2011

1
Wezen
Werzn
Wovan

Example 2-2

Example 3-2

Example 1-2

- 0.8
- 06
- 0.4
- 0.2

Example 1-3 Example 2-3 Example 3-3
Seattle precipitation by month, 1998-2018 2004 P::i‘gi:‘::‘lf'e‘-'""” 50
January. e a0 e Orang
m;:t: m o Orang
e 0 —
June — Al
AU:Z 20 — Target
T "
Cecomer . : 0
oy precaron gy 100 latnee vEa0 Jan Feb Mar

Example 1-4 Example 2-4 Example 3-4
" — Grading
20m — mG1
—— " so] -
4am I R G3
I E— 0010 mGa
Gam I — a0
S I I — a0
Bam | S N S —
| N S a8 0.005 =
10em | [ S — N =
N N S S P aon §
120m | I S — i = 304
| I S — g o000
2pm | N N S — 128
| I S R E— i
apm. I N S — 20
| I S N E— 20
Spm | I S —
I .
apm I 18- T
— P 10-{
10pm I 7
— 10 .
6 o= T -
L —— L T I T T B RO piid

Fig. 10. Example colormap results extracted by our CNN model for the real-world visualizations with unseen colormaps. Colormaps predicted by our CNN
model are presented underneath the visualization images.
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