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InfoColorizer: Interactive Recommendation of
Color Palettes for Infographics

Lin-Ping Yuan, Ziqi Zhou, Jian Zhao, Yiqiu Guo, Fan Du, Huamin Qu Member, IEEE

Abstract—When designing infographics, general users usually struggle with getting desired color palettes using existing infographic
authoring tools, which sometimes sacrifice customizability, require design expertise, or neglect the influence of elements’ spatial
arrangement. We propose a data-driven method that provides flexibility by considering users’ preferences, lowers the expertise barrier
via automation, and tailors suggested palettes to the spatial layout of elements. We build a recommendation engine by utilizing deep
learning techniques to characterize good color design practices from data, and further develop InfoColorizer, a tool that allows users to
obtain color palettes for their infographics in an interactive and dynamic manner. To validate our method, we conducted a
comprehensive four-part evaluation, including case studies, a controlled user study, a survey study, and an interview study. The results
indicate that InfoColorizer can provide compelling palette recommendations with adequate flexibility, allowing users to effectively obtain
high-quality color design for input infographics with low effort.

Index Terms—Color palettes design, infographics, visualization recommendation, machine learning.
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1 INTRODUCTION

Infographics have been widely accepted as an effective
means to convey abstract information to the general public.
Besides the content and structure of infographic elements
(e.g., shapes, pictograms, text, and indices), the colors of
these elements and their combinations—color palettes—are
essential, because they significantly influence the aesthetics,
engagement, and memorability [21], [9]. However, either
crafting an infographic or selecting an effective palette is
not easy, especially for general users who lack expertise in
design, since each task requires considering many factors
simultaneously such as layout, appearance, and perceptual
effectiveness. While many authoring tools [28], [34], [69],
[64], [12], [15], [63] have been developed to facilitate info-
graphics creation, these tools do not provide adequate color
design support. Users are required to either manually craft
color palettes or choose them among a predefined set.

Imagine a marketing manager, Linda, obtains a blue-
background infographic online, and wants to use it in her
slides with the company brand theme, which is red. She
loads the infographic into Adobe Illustrator, but soon gets
stuck in attempting to create a color palette from scratch.
While there are many principles for color design, Linda is
not familiar with them, and thus has no idea how to leverage
them to get a harmonious palette. Thus, she turns to the
predefined palettes in the tool, but finds limited available
choices to satisfy her needs. She wants the background red
while having some elements’ colors to reflect affective or
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semantic information. Even a palette meeting all the require-
ments is finally found, there is still a big question on which
color in the palette should be applied to which element
of the infographic. The spatial layout of these elements
matters [44], [33], for example, a piece of text of less contrast
color with its background element is hard to read.

The above example reveals three key common challenges
of designing color palettes using the existing tools: 1) creat-
ing a palette from scratch requires users having relevant
expertise, 2) using predefined palettes by the tool limits
users’ freedom, and 3) applying a palette to an infographic
is complicated due to the spatial layout of elements.

To address these challenges, we propose InfoColorizer, an
interactive tool that allows general audience to effectively
design color palettes during infographic creation, using a
data-driven approach (Fig. 1). We employ deep learning
to extract color design practices from a large dataset of
infographics created by designers, and then use the learned
model to recommend appropriate color palettes. This lowers
the expertise barrier of users to craft good color palettes.

Training Data
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Feature Extraction

VAEAC Recommendations

......

User Preferences

x x x x

Infographic Editing

Visual InterfaceRecommendation Engine

bind the same color

set color

Recommendation EngineRecommendation Engine

Fig. 1. InfoColorizer consists of a recommendation engine and a visual
interface. The recommendation engine is constructed by first extracting
structure and color information from inforgraphics and then training a
deep learning model, VAEAC, to characterize good color design prac-
tices. The visual interface further allows users to obtain recommended
palettes, specify various preferences, edit infographics, and retrieve new
recommendations iteratively.
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Particularly, we frame the learning process as a conditional
generative problem, and leverage VAEAC (Variational Au-
toEncoder with Arbitrary Conditioning) [25] to recommend
color palettes dynamically based on conditions (e.g., color
preferences) set by users. This offers flexibility to users by
enabling partial specification of palettes with exact or vague
color constraints. Moreover, we characterize infographics
with features including information about the elements’
spatial layouts in the dataset, allowing for integrating such
knowledge into our learned model. This suggests color
palettes tailored for particular element arrangements in info-
graphics. InfoColorizer also supports some basic editing
functions, allowing users to try out different infographic
layouts, obtain corresponding palette recommendation, and
iteratively refine their design.

We validated InfoColorizer through a comprehensive
evaluation comprising four parts. First, we demonstrate
the usefulness of InfoColorizer with case studies using
real-world infographics and example scenarios. These cases
reveal that the system can facilitate color palettes design
with cogent recommendations in different tasks such as
filling empty wireframes and combining infographics with
different color schemes. Then, we conducted a controlled
user study with 24 design novices. The qualitative and
quantitative results show that InfoColorizer offers higher
efficiency and better creativity support than a baseline with
manual color design and online resources. Third, we carried
out an online survey study with 102 users to compare
artist-designed, predefined, randomly-generated, baseline-
crafted and InfoColorizer-recommended color palettes on
aesthetics and readability. The results indicate that although
InfoColorizer’s recommendations were not perceived to be
as good as artist-designed palettes, they received higher
scores than the other three methods on both factors. Finally,
we interviewed four graphic design experts in depth; they
appreciated InfoColorizer’s novel features and were able
to generate compelling infographics meeting their needs
effectively within a few operations. In summary, our main
contributions include:
• A novel data-driven approach that recommends palettes

for infographics by leveraging deep learning techniques
with the consideration of elements’ spatial arrangements,
while offering flexibility for user preferences of colors;

• An interactive tool, InfoColorizer, that incorporates the
data-driven recommendation and makes it easily accessi-
ble and manageable to users, along with the support of
iterative design and basic infographic editing; and

• Insights and results from a series of evaluations covering
case studies, a controlled user study, an online survey, and
an interview study.

The source code of the system (including the models, user
interface, examples, and appendices) is available at https:
//github.com/yuanlinping/InfoColorizer.

2 RELATED WORK

2.1 Infographic Models and Authoring Tools
Compared to plain charts or text, infographics incorporate
additional visual embellishments (e.g., icons, images, and
pictograms) to convey abstract information appealingly. Pre-
vious empirical studies have shown that they can increase

comprehension and engagement without reducing viewers’
accuracy [8], [20]. Further, researchers have demonstrated
that colors are essential to make visualizations memorable
and influence a first impression [9], [21], [51].

Besides empirical studies, data-driven methods or ma-
chine learning models have been applied for estimating
the visual importance [11], exploring perceived personal-
ities [71], and computing similarity of infographics to fa-
cilitate search [48]. Recently, Lu et al. [36] explored high-
level narrative flows extracted from infographic collections.
However, none of them have focused on the color aspect of
infographics design.

To facilitate the creation of infographics, researchers have
developed many authoring tools, which fall into three main
categories: programming toolkits, interactive design envi-
ronments, and semi- or fully-automated tools. Programming
toolkits (e.g., D3 [10]) allow users to create visualizations
with the greatest extent of flexibility. However, they usually
have a steep learning curve and are challenging for general
users. Thus, many interactive design environments have
been developed for users without programming skills, such
as Adobe Illustrator. Also, tools that support data binding
have been proposed to ease the creation of data-driven
charts and infographics, including the binding of standard
marks [49], icons [64], and hand-drawn shapes [28], [69],
[34]. However, they still require users to manually craft
infographic elements. To further lower the barrier, semi- or
fully-automatic tools were developed to support creating
infographics directly from different inputs, such as natural
language statements [15], tables [63], graphs [57], and time-
line images [12].

While providing rich capabilities, almost all the above
systems leave users with two options to obtain a palette—
which is critical for the aesthetics of their infographics—
including: 1) manually creating one from scratch and 2)
choosing from a predefined collection. The former requires
expertise in color design and the latter limits a user’s
flexibility. Our work aims to address these issues via an
interactive recommendation. Motivated by the discussion of
Lu et al. [36] on the spatial structure of infographics, we go a
step further to integrate the information of elements layout
into suggesting proper palettes.

2.2 Color Palette Design Principles and Tools
Prior studies mainly focus on improving perceptual dis-
criminability and aesthetics of designed palettes in data
visualization. Levkowitz et al. [31] suggested that discrim-
inable palettes should effectively mirror encoded data and
accurately convey data differences. Visualization designers
are recommended to consider many factors, such as un-
derlying data types [58], visual consistency [45], tasks [59],
and color properties (from basic visual separability [62],
contrast [40], and difference metrics [56], to more advanced
color appearance [30], name differences [23], affect [7], and
semantics [32], [50]). Moreover, studies indicated that using
harmonious colors [39] or adjusting hue and saturation [41]
can increase the aesthetics of visualizations.

However, applying these principles in practice can be
difficult for non-experts. Many techniques have been pro-
posed to ease this process, such as ColorBrewer [22] that
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provides predefined palettes for encoding sequential, di-
verging, and qualitative data. In the case of graphic design
(i.e., not encoding any data), some commercial interactive
tools (e.g., Adobe Color [6]) utilize harmonic templates to
help users craft customized palettes with high quality.

Further, researchers have developed algorithms to au-
tomatically generate palettes for different applications. For
categorical data, Colorgorical [19] creates palettes based on
user-defined balance of color discriminability vs. aesthetic
preference. Palettailor [35] further provides a data-aware
approach that generates and assigns colors for multi-class
scatterplots, bar and line charts to maximize their visual dis-
crimination. For numerical data, Smart et al. [54] modeled
expert-designed color ramps to suggest palettes. Besides
data charts or visualizations, algorithms have been designed
for (re)coloring other types of media, such as natural images
and patterns [14]. O’Donovan et al. [43] proposed a color
compatibility model that can score the quality of any five-
color palettes. By considering compatibility and spatial ar-
rangements of colors, Lin et al. [33] suggested a probabilistic
model for coloring 2D patterns.

However, the above techniques focus on charts/ vi-
sualizations, natural images, or patterns; none of them
are developed for infographics with unique characteristics.
First, infographics consist of both data elements and visual
embellishments, where colors play multiple roles such as
visual group indicators and artistic decorators [36]. Second,
the spatial arrangement of its elements is different from that
in other media, which may exhibit complicated semantics
and convey a narrative. Perhaps the general methods on
suggesting palettes for website design [6], [43], [22], [19]
can be used for infographics. However, they are limited in
generating palettes with a fixed number of colors (e.g., five),
and do not support assigning colors to infographic elements.

2.3 Visualization Recommendation
Researchers have explored various techniques for recom-
mending appropriate visualizations, including some com-
mercial tools such as Tableau. One category falls in rule-
based methods. APT [38] introduces a compositional al-
gebra to enumerate the space of charts and ranks them,
which was later extended in SAGE [47]. CompassQL [65],
the basis of Voyager [66] and Voyager 2 [67], offers flexible
query specifications for searching the visualization space
and providing recommendations. Further, Draco [42] lever-
ages answer set programming to describe constraints over
visualization design. Another category is data-driven, based
on machine learning techniques. VizML [24] learns design
choices from a corpus of data and visualization pairs.
Data2Vis [17] is an end-to-end neural network that gen-
erates visualizations directly from data. DeepEye [37] and
LQ2 [68], on the other hand, combine rule-based methods
and machine learning to rank and classify visualizations.

While the above systems allow users to effectively create
visualizations from input data, none of them adequately
support recommending color designs of generated charts.
Moreover, as mentioned above, infographics have unique
characteristics that are different from ordinary charts or
visualizations, which is the focus of our work.

3 INFOCOLORIZER DESIGN AND OVERVIEW

In this section, we outline the design goals for developing
InfoColorizer, followed by an overview of our method.

3.1 Design Goals
Motivated by the aforementioned scenario and limitations
of the existing tools, we derive the following design goals.

G1: Lower expertise barrier for crafting professional
palettes. Creating high-quality palettes is challenging for
general users as many factors need to be considered si-
multaneously, such as aesthetics, harmony, and perceptual
discriminability. The system should characterize good practices
embodied in handcrafted designs, and assist users with automatic
palette recommendation that reflects these good practices.

G2: Offer flexibility to embed different kinds of user
preferences. Users may have constraints when creating
palettes, such as applying a specific or semantically mean-
ingful color to a particular element, and setting multiple
relevant elements with the same color for consistency. The
system should provide a flexible mechanism to allow for specifying
various types of color preferences on elements of interest, as well
as alleviate users from considering colors for other elements.

G3: Incorporate consideration of spatial arrangements
of elements. A good palette may work poorly with im-
proper color assignments because elements’ spatial lay-
out influences color appearance. However, determining an
assignment from numerous possibilities (e.g., around 510

assignments for a five-color palette and a ten-element info-
graphic) requires much trial-and-error tweaking. The system
should adapt palettes to particular spatial arrangements of input
infographics in recommendations, thus freeing users from the
tediousness of tuning color assignments.

G4: Support simple user interactions and iterative
design of color palettes. General users rely on interfaces
to access system functions. The system should provide intuitive
user interactions such as obtaining palette recommendations, spec-
ifying color preferences, and previewing & editing infographics.
Further, the palette design process is often iterative by trying
different ideas. The system should facilitate refining results in a
human-in-the-loop manner, such as bookmarking recommended
palettes, and tuning constraints according to their needs.

3.2 Method Overview
As shown in Fig. 1, we employ a data-driven approach
to automatically acquire good practices exhibited in info-
graphic collections and then utilize the “learned knowl-
edge” to recommend palettes, with a visual interface that
allows interactions with the recommendation engine.

More specifically, considering an infographic I =
{E1, E2, · · · , En}, where Ei is an element, we characterize
I with a set of non-color features F = {F1, F2, · · · , Fm}
and color features C = {C1, C2, · · · , Cn} for the n elements
(see Sec. 4). The non-color features F include information
at different granularity (e.g., infographic and element lev-
els), and the spatial arrangement of elements, which are
combined and represented in a tree structure (G3). For
expert-designed infographics, the color features C, and their
relations with the features F reflect good practices that we
wish to capture.
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Fig. 2. (a) Artistic elements, graphical data elements, visual groups,
and visual information flow (VIF) & backbone in an infographic. (b) The
conceptual tree model. Some branches are omitted for simplicity.

We therefore frame our recommendation process as
a conditional generative problem (see Sec. 5). We em-
ploy Variational AutoEncoder with Arbitrary Conditioning
(VAEAC) [25] as our generative model, because of its flexi-
bility in adapting any features as conditions. That is, given
a collection of expert-designed infographics, with features
(Fk,Ck), the model can learn a probability distribution over
the full feature set—non-color features F and colors C—to
capture the good practices (G1). Later, the learned model can
be used to generate any “missing” features of an infographic
I with knowing the rest (i.e., the arbitrary conditions). For
example, users can specify colors Ci and Cj for certain
elements Ei and Ej , and the conditional generative prob-
lem becomes sampling from p(C \ Ci,j |F, Ci,j), allowing
for the flexibility of incorporating different kinds of user
preferences (G2). To make the above recommendation easily
accessible and configurable, we design a visual interface
for InfoColorizer, which also enables iterative generation of
colors and simple infographic editing functions (G4).

4 DATASET AND INFOGRAPHIC MODEL

To achieve the design goals, the first step is to identify
high-quality infographic datasets from which a data-driven
method can extract good palette design practices (G1). Fur-
ther, we need to conceptually model infographics in a form
that is effective for algorithms to understand and process.

4.1 Dataset
Previous studies collected several infographic datasets, such
as MassVis [3], Visually29K [5], InfoVIF [36] and Time-
lines [12]. We chose InfoVIF as our initial test bed because: 1)
compared to MassVis and Visually29K, InfoVIF tends to be
more useful for general audiences and has more uniform
styles of visual elements and layouts, allowing machine
learning to better capture common design patterns; 2) com-
pared to Timelines, InfoVIF covers a wider range, including
not only timelines but also other types; 3) infographics
in InfoVIF are contributed by world-wide designers with
high-quality and diverse design themes. Thus, InfoVIF is a
suitable resource from which good color design practices
can be extracted (G1).

4.2 Conceptual Model of Infographics
As shown in Fig. 2-a, Lu et al. [36] characterized an info-
graphic as a combination of artistic decorations (e.g., shapes,

images, and cliparts) and graphical data elements (e.g., icons,
text, and indices). Graphical data elements are then orga-
nized into visual groups to convey pieces of information.
Visual groups are further presented in sequential order,
called visual information flow (VIF), to indicate a narrative of
the infographic. The path connecting the semantic centroids
of the visual groups is called VIF backbone.

However, this infographic model is not sufficient for our
case, because it only considers graphical data elements when
composing visual groups. This is oversimplified, because
the artistic decorations and their colorfulness largely affect
the aesthetics of infographics, and thus are important in
determining proper color palettes for a visually compelling
infographic. Further, while VIF captures a high-level spatial
structure to make logical sense, more detailed spatial rela-
tionships between individual elements arguably influence
the color palette design. For example, two elements next to
each other (i.e., adjacency) may share the same color to imply
the “Similarity” Gestalt Law [16]; and one element fully on
top of another (i.e., inclusion) is benefited from choosing a
high contrast color with respect to the one below.

To address these issues, we first extend Lu et al.’s
model [36] by including both artistic and graphical data ele-
ments in visual groups, as well as VIFs, which characterizes
an infographic from a logical perspective (Fig. 2-a). Inspired
by trees being used to analyze topological structures of
images [55], we further employ a tree structure, which incor-
porates Lu et al.’s model and characterizes an infographic
from a spatial perspective (G3). The structure can describe
the adjacency and inclusion spatial relationships at multiple
levels (Fig. 2-b). The root node of a tree represents the whole
infographic (i.e., the background canvas), and the second
layer of the tree represents all the visual groups, whose de-
scendant nodes are artistic or graphical data elements within
the corresponding visual group. Under a visual group node,
a parent-child link indicates element inclusion, and a sibling
relation indicates adjacency in layout. Our model conceptu-
alizes an infographic from both logical and spatial aspects,
allowing data-driven models to extract associations between
these aspects and color designs.

5 INFOCOLORIZER SYSTEM

In this section, we describe InfoColorizer in detail. As shown
in Fig. 1, the system consists of a recommendation engine
and a visual interface. We first describe the feature extrac-
tion process (Sec. 5.1) and how we characterize good color
design practices using the VAEAC model (Sec. 5.2). We then
demonstrate InfoColorizer’s ability to support flexible color
preference specifications (Sec. 5.3), and the visual interface
that enables an effective palette design workflow (Sec. 5.4).

5.1 Characterize Infographics with Various Features
For an infographic I, we compile a set of color C and non-
color F features to describe its visual appearance and spatial
arrangement of elements (G3).

We extract the color values of all elements and the
infographic background as the color features C. CIELab
color space is used because of its perceptual uniformity.
We distill a list of non-color features F at the multiple
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levels. At infographic level, we obtain VIF Type, Visual
Group Number, and Visual Group Distance. Features in visual
group level contain Visual Group Element Number and Rela-
tive Visual Group Size. At element level, we extract Element
Type, Relative Element Size and Relative Element Pixel Area for
each artistic and graphical data element. In addition, we
use the nested set model [18] to represent the tree structure
(Sec. 4.2) of an infographic by storing Left Index Number and
Right Index Number of each node. A complete explanation of
the above features and technical details about the extraction
algorithms can be found in our online Appendix Sec. A.

The non-color features embed many design factors con-
sidered by experts. Specifically, they help organize informa-
tion about narrative flow (VIF), visual groups (Visual Group
Number and Distance), size(Relative Visual Group Size, Relative
Element Size/Pixel Area), shape (Element Type). Besides, the
tree structure reveals the spatial arrangement of elements
(G3) and other design factors, such as layers by tree traversal
background/foreground contrast by inferring parent-child
relationships, etc. Characterizing these factors makes cap-
turing high-level color design practice from infographics
possible with a data-driven approach.

5.1.1 Technical Details for Features Extraction
While Lu et al. [36] provided methods for extracting VIF
and graphical data elements, our key technical challenges
include identifying artistic elements and constructing the
tree structure as described in Sec. 4.2.

Infographic Level Features Extraction. We employ the
data element extraction and VIF construction algorithms
in [36]. Their data element extraction utilizes a state-of-
art object detection model to identify the bounding boxes
of graphical data elements (e.g., icons, text, indices) in an
infographic. Based on the detected elements, the VIF con-
struction algorithm leverages Gestalt principles to identify
the visual groups and VIF backbone. Therefore, we can
easily compute the VIF Type, Visual Group Number,
and Visual Group Distance.

Artistic Elements Identification. The algorithms in [36]
can only detect graphical data elements, whereas identifying
artistic elements is essential for us to compute the features
at the visual group and element levels and to construct a
precise tree model of an infographic. An intuitive idea is
to find areas with the same (or similar) colors using color
segmentation [60], because an artistic element is usually
exhibited as a shape with a consistent color or smooth color
gradient. We achieve this via three main steps (Fig. 3):

1) Remove graphical data elements. The graphical data el-
ements can interfere with our color segmentation, as
they are also colored and often overlay on top of artistic
elements. To remove a data element (Fig. 3-b), we
simply set all the pixels within the bounding box with
its background color (usually the color of the artistic
element below or the infographic background).

2) Perform color segmentation. Then, we group continuous
pixels with similar colors (in CIELab color space) using
a region growing algorithm [60] (Fig. 3-c). A threshold
in CIEDE2000 color difference needs to be set, and we
experimentally found that setting the threshold to 4
yields good segmentation results.

3) Merge segments with similar color hues. An artistic ele-
ment may contain a color gradient, resulting in multiple
segments from the previous step. As the segments
usually have similar hues, we apply kernel density
estimation (KDE) clustering [27] on hues and group
segments in the same cluster into one (Fig. 3-d). We
used Gaussian kernel and set the bandwidth to 3.

We therefore obtain a continuous region of pixels that
represents an artistic element, and thus can easily compute
its bounding box.

Tree Construction. With all the graphical data and artis-
tic elements identified, we now can construct a tree structure
described in Sec. 4.2 based on their bounding boxes. We
start by considering each element as a node, and construct
the tree from top to bottom. An edge is added between
two elements if one’s bounding box directly contains the
other’s without others spatially in-between. As shown in
Fig. 4-a, we then obtain a tree whose root node is the
background canvas of an infographic and other nodes are
either graphical data elements (in blue strokes) or artistic
elements (in black strokes). Next, we group branches con-
taining graphical data and artistic elements within a visual
group (based on the VIF construction algorithm), and insert
visual group nodes (in green strokes) below the root (Fig. 4-
b). With this tree representing the logical structure as well
as the spatial arrangement of elements in an infographic, we
conduct a pre-order traversal on the tree and compute the
Left Index Number and the Right Index Number.

Visual Group Level and Element Level Features Extrac-
tion. After identifying all the elements and visual groups
with the above procedures, most of the visual group and
element level features (such as Visual Group Element
Number, Relative Visual Group Size, Relative
Element Size, and Relative Element Pixel Area)
are easy to compute. The Element Type of graphical data
elements can be obtained by the data element extraction
in [36]. To recognize the Element Type of an artistic ele-
ment, we first find its contour (consisting of pixel locations)
using Suzukil et al.’s algorithm [55]; and then we compute
an approximated contour (consisting of a few vertices) using
the Ramer-Douglas-Peucker algorithm [46]. We classify the
artistic elements based on their shape using the vertices in
the approximated contour. For example, if there are three
vertices, we recognize it as a triangle.

5.2 Lower Expertise Barrier with Recommendation
The next step is to train a machine learning model that
extracts good design practices in data and utilizes that for
providing recommendations (G1). As mentioned in Sec. 3.2,
we frame the recommendation process as a conditional
generative problem, and employ Variational AutoEncoder
with Arbitrary Conditioning (VAEAC) [25], a special kind
of Variational AutoEncoders (VAE) [29].

In general, a VAE aims to learn a bidirectional mapping
between data items x in an application domain and vari-
ables z in a continuous latent space. The model consists
of two parts—an encoder p(z|x) that converts x to z and
a decoder q(x|z) that does the opposite; and the training
process is to learn the two probability distributions. In our
case, x is the infographic features, [F,C], and z reflects the
abstract knowledge in data.
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Fig. 3. Three steps to identify artistic elements in an infographic: removing graphical data elements, performing color segmentation, and merging
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(a) initial tree (b) tree with visual groups 

background canvas
visual groups

artistic and graphical 
data elements

0

1 2

3

4

5

6 7

8A1 B2

I I

T T

9

10

0

1 2

3

6 7

8A1 B2

I I

T

G1 G2

4

5

9

10 T

Fig. 4. Constructing the conceptual tree model of the infographic in
Fig. 3. Blue, black, and green stroked circles indicate graphical data
elements, artistic elements, and visual groups, respectively (T denotes
Text and I denotes Icon).

We want to obtain color palettes according to a specific
design of infographic reflected in F, which is a conditional
generation. Moreover, users may have specific preferences
on coloring certain infographic elements (G2), meaning that
some part of C is in the conditions. VAEAC, as an extension
of VAE, can handle the above requirements, by incorporat-
ing a binary mask vector b that controls which part of x is the
conditions (observed features) or not (unobserved features). Its
encoder and decoder are p(z|x1−b, b) and q(xb|z, x1−b, b),
respectively, where x1−b is the observed part and xb is the
unobserved part. The model is trained with a full set of
features x, and can fill in any “missing” unobserved part
of x (i.e., called feature imputation) during the generation
stage with a dynamic input of b. When applying to our case,
we treat F always observed and set part of C observed,
controlled by a user input b. If none of C is observed (i.e.,
b = ~1), the model can generate a full color palette for an
infographic; and if some colors of C is observed (i.e., spec-
ified by a user with certain colors), the model can generate
the rest of a color palette with these colors satisfying users’
constraints. Details regarding the user preferences support
will be introduced in Sec. 5.3.

Fig. 5 illustrates the idea of conditional generation be-
hind VAEAC with an example of how spatial arrangements
influence the recommended colors. We trained a VAEAC
model on the obtained features [F,C] described in Sec. 5.1
and another VAEAC model on the same dataset but remov-
ing spatial features representing tree structures (e.g., Left and
Right Index Number). Then, we recommended 200 palettes
with each trained model for each of the two infographics
shown in Fig. 5. The two infographics have four visual
groups, each consisting of a circle and an annular sector,
whose spatial relationships are either inclusion (Fig. 5-a)
or adjacency (Fig. 5-b). Next, for each combination of the
two infographics and models, we calculated the distances
between recommended colors of the circle and annular
sector in the upper left visual groups (highlighted with
green strokes) and obtained their distributions (Fig. 5-c)
with kernel density estimation. We observe that the distri-
butions generated by VAEAC trained with spatial features
(blue lines) are distinct, while the distributions generated

(a) inclusion

(b) adjacency (c) Normalized Distance

D
ensity

Fig. 5. Distributions (c) over distances between colors predicted by
VAEAC models trained with or without spatial features for elements with
inclusion (a) and adjacency (b) relationship.

by VAEAC without spatial features (red lines) are similar.
This indicates that the extra spatial information enables
VAEAC to distinguish spatial arrangements and generate
palettes tailored to different cases. Specifically, the model
trained with spatial features tends to recommend similar
and dissimilar colors for adjacent and overlapping elements,
respectively. This aligns with the practice in the training
dataset, in which designers use close colors to indicate
adjacent elements within a visual group, and different colors
to separate overlapping elements.

To further investigate the performance of VAEAC, we
also considered two alternative models including: 1) Gener-
ative Adversarial Imputation Nets [70], which is the state-
of-the-art GAN-based model for feature imputation, and 2)
Multivariate Imputation by Chained Equations [61], which
is a classic non-deep-learning method. Our experiments
indicated that VAEAC performed the best. Details about the
model training, comparison, and evaluation can be found in
the online Appendix Sec. B.

5.3 Offer Flexibility with Versatile User Preferences
With a trained VAEAC model, InfoColorizer can not only
recommend colors for each infographic element but also
support flexible control over the colors in recommendation
(G2). InfoColorizer supports two kinds of user constraints:
1) specifying colors for certain elements in either an exact or
a vague form, and 2) binding several elements together to
have the same color in recommended palettes.

As mentioned in Sec. 5.2, VAEAC can generate un-
observed colors conditioning on non-color features and
observed colors. Thus, we can generate palettes meeting
users’ preferences by manipulating the input feature vector.
Specifically, if a user assigns an exact color (e.g., in CIELab
space [l, a, b]) to an element Ei, the corresponding color
features of Ei are set to [l, a, b], indicating these features are
observed. Moreover, users can assign colors to an element
Ei semantically using a word (referring to a range of colors)
such as a color name (e.g., red, skyblue), an object (e.g., apple,
dollar), and a kind of affect (e.g., exciting, calm). To handle
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such vague specifications, we first collected over 200 (word,
colors) pairs from the previous works on color names [23],
color affect [7], and color semantic [32]. We then utilize this
information to manipulate the input feature vectors. When
a word is assigned to an element Ei, we randomly select k
colors from the corresponding color set and then generate k
input vectors (we set k to 3 in InfoColorizer), where each has
a different color (from [l, a, b]1 to [l, a, b]k) for the observed
features of Ei. We can thus obtain k sets of recommenda-
tions and randomly pick some for presentation.

Users can also bind relevant elements (e.g., those within
a visual group, or all icons, text, etc.) to constrain them
with the same color in recommendations. We adopt a post-
processing method on the recommended color palettes. For
example, suppose that Ei, Ej , Ek are bound, for each rec-
ommended color palette, we randomly select one of them
based on a probability decided by their areas, and then set
all three elements with the color of the selected one.

5.4 Support User Workflow with Visual Interface
We develop a visual interface that enables users to itera-
tively obtain desired palettes by supporting basic editing
and previewing functions, color preferences and other con-
straint specifications, and interactive recommendation (G4).

The interface (Fig. 6) consists of three interactively-
coordinated panels. The Content Library (Fig. 6-A) stores raw
materials (e.g., shapes, images, icons) and infographic tem-
plates. Users can create an infographic either from scratch or
based on a template, and edit it on the Main Canvas (Fig. 6-
B). The toolbar on the top supports some simple editing
functions such as arrange, group/ungroup, duplicate, and
delete. The Control Panel (Fig. 6-C) is a core component,
where users can obtain desired palettes by iteratively speci-
fying preferences, obtaining recommendations, and refining
the design. Overall, we designed the interface with common
panels and components to improve the usability and learn-
ability. However, we proposed a novel widget for setting
color preferences (Fig. 6-C1) with visualizations of layered
elements and interactive linking.

Here, we use a simple scenario to demonstrate an in-
teractive workflow of obtaining desired palettes with Info-
Colorizer. Suppose the marketing manager, Linda, wants to
improve a chosen infographic from the Content Library (the
first one in Fig. 6-A). She then clicks “Analyze Infographic”
which analyzes the spatial relationships of its elements and
displays a tree structure on the Color Preferences section
(Fig. 6-C1). The tree, informing our conceptual infographic
model (see Fig. 2), is visualized as rectangles in horizontal
layers. The bottom layer is the background canvas, and the
second bottom layer contains the elements directly placed
on the background, and so forth. The color of a rectangle in-
dicates users’ preferences of the corresponding element; an
empty rectangle with a diagonal line means no constraints.

Initially, she wants the background to be lighter and
all the text to be pure white consistently. With the Color
Preferences section (Fig. 6-C1), she assigns a vague color
specification with the word “light” to background canvas;
the word is shown on top of the rectangle. She then binds
the four text objects and sets “#FFFFFF” (i.e., white) as
their colors. The bound elements, which will always have

the same colors in recommendations, are indicated by the
small red dots below. The resulting color preference setting
is shown in Fig. 6- 1©-CP1.

Linda clicks “Get Recommendations”, and a list of rec-
ommended palettes meeting her needs are then returned by
InfoColorizer (Fig. 6- 4©). The number of returned recom-
mendations can be adjusted in InfoColorizer (the default is
five). She picks her favorite one, Fig. 6- 4©-P1, for preview
and refinement. The chosen palette is then duplicated in
the Color Preferences section (Fig. 6- 1©-CP2), and the info-
graphic is automatically colored by the palette (Fig. 6- 5©).

However, Linda is not satisfied with the colors of the
first and last bars (i.e., “01” and “05”). She thus clears the
colors of the two bars (Fig. 6- 1©-CP3), and requests new
recommendations with this preference setting. The results
are shown in Fig. 6- 3©. Similar to the previous iteration, she
picks her favourite palette in Fig. 6- 3©-P2, which updates
the Color Preference section (Fig. 6- 2©) and the infographic
(Fig. 6- 6©). Linda is quite happy with this color design and
exports the infographic for her presentation slides.

6 EVALUATION

To assess the effectiveness and usefulness of InfoColorizer,
we conducted a four-part evaluation. We first used several
case studies to demonstrate that InfoColorizer can generate
compelling palettes under different scenarios. In addition,
we quantitatively and qualitatively evaluated InfoColorizer
from the perspectives of novice creators, infographic read-
ers, and graphical design experts separately by conducting
a controlled user study, a survey study, and an interview
study. These studies comprehensively reflect the strengths
and weaknesses of InfoColorizer from different aspects.

6.1 Case Studies
Fig. 7 presents a set of infographics colored by recom-
mended palettes. More examples can be found in online
Appendix Sec. C. We demonstrate how InfoColorizer can
facilitate palette creation under different user preferences
and constraints. We consider three use cases: a) colorizing
a wireframe infographic, b) improving the color readability
of an infographic, and c) stitching two infographics with
different color schemes. For each case, we select one info-
graphic from a website [4]. We demonstrate InfoColorizer’s
recommendations under four conditions: 1) no preferences,
2) exact color specification, 3) vague color specifications, and
4) element binding. In Fig. 7, we use “Pin” icons to indicate
elements that are specified with exact colors, annotate the
words on elements that are specified vaguely, and add links
to elements that are bound together. We can see that Info-
Colorizer can generate compelling palettes for the source
infographics under different conditions; all of the results are
obtained through one to two requests of recommendations.

Even without any color preferences, InfoColorizer is able
to suggest cogent color palettes. For example, in Fig. 7-A1,
the colors of the four shapes are in a smooth and consistent
theme. In Fig. 7-C1, a user wants to obtain a palette for
the head adapted to the bulb, and thus sets no preferences
for the head while fixing colors for the bulb. The system
recommends a color palette for the head similar to that of
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the bulb, indicating that the model utilizes observed color
features (i.e., the bulb) to influence unobserved) color features
(i.e., the head). Moreover, by assigning the backgrounds in
Fig. 7-A2, B2 with desired colors, the original foreground
colors are filled or enhanced with colors in contrast to
the backgrounds. Further, after specified with some words
of general color hues and semantics, InfoColorizer returns
aesthetically pleasing infographics. For example, in Fig. 7-
B3, a user demands a pink-themed infographic but has no
idea about what specific pink colors are the best, and thus
specifies general color categories with words. In Fig. 7-C3,
“exciting” is attached to all the color strips on the head to
match the underlying semantics of getting an idea (i.e., the
bulb). Finally, by binding some elements together, a user
can obtain more consistent color palettes, such as linking
the corresponding arrows in Fig. 7-B4 to indicate different
types of stages, and associating the relevant parts between
the head and the bulb in Fig. 7-C4.

6.2 Controlled User Study
We further conducted a controlled study to evaluate the
effectiveness of InfoColorizer with real users. This study
aimed to investigate two aspects of the workflow: (S1)
whether InfoColorizer can facilitate users for obtaining sat-
isfactory palettes for their infographics, and (S2) whether
InfoColorizer can support users’ creativity in designing
palettes. In particular, we investigate these questions under
the situations that users have specific color preferences and
consider the spatial layout of graphic elements.

6.2.1 Study Setup
Baseline. We considered a baseline to simulate a com-
mon palette design process in practice, in which people
derive palettes from different sources (e.g., color pickers,
predefined palettes, and online websites), and then color
their infographics with a design tool [26]. We thus de-
veloped a baseline version of InfoColorizer by disabling
the palette recommendation function and allowing users
to seek colors via online resources and tools. In particular,
we suggested three widely-used websites: Adobe Color [6],
ColorBrewer [1], and Coolors [2]. They allow users to ex-
plore numerous expert-designed or automatically generated
palettes, craft palettes from scratch using harmony rules,
and search palettes with words like lucky, moonlight, cover-
ing a range of functions offered in InfoColorizer. However,
it is not mandatory for users to use all of them. Instead,
users can use any number of the websites and employ any
other online resources. We did not choose any commercial
tool such as Adobe Illustrator as the baseline, because
the learning curve is quite high for general users and the
interfaces are dramatically different.

Participants and Apparatus. We recruited 24 partici-
pants (10 females; aged 19–26) from a local university. They
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(c) Questionnaire Rating (a) Time (b) Count

Fig. 8. Results of the controlled user study: (a) Completion time for
generating satisfying infographics in Task 1. (b) Counts of the resulting
infographics in Task 2. (c) Participants’ subjective ratings on the exit-
questionnaire (the higher is better).

are all with normal color vision and their backgrounds range
from engineering, law, to business. Their average years of
experience in visualization or design is 0.375 (σ = 0.77), so
that they are novice users for our study tasks. Their self-
reported expertise of color theories (e.g., harmony rules,
color semantics) was: M = 2 and IQR = 2, on a 7-point
Likert scale (1=“do not know at all” and 7=“very familiar”)
We deployed InfoColorizer and its baseline version on the
cloud, and participants completed the study remotely via
video conferencing software on their own machines.

Tasks. We created four experimental infographics with
certain contextual information (e.g., talking about a kid’s
weekend). Participants needed to complete two tasks during
a study session. Task 1 aimed to assess the efficiency of
the tool (S1), in which participants needed to color three
infographics (out of the four) until they were satisfied with
the results, one by one, without a time limitation. For each
infographic, according to the context, three forms of color
preferences were specified for three elements during the
tasks, including: an exact color, a color name, and a semantic
or affective word. Task 2 aimed to assess the creativity
supported by the tool (S2), in which participants colored the
same infographic (the rest one of the four) within 15 minutes
to obtain as many satisfying results as possible. In this task,
users were given general contextual information instead of
concrete preferences. In each task, we explicitly explained
the constraints or context and asked participants to ensure
the pre-defined preferences were met and each element was
distinguishable. For the baseline, participants could import
a color palette as a whole to minimize the effort of copying
and pasting single colors from the websites.

Design and Procedure. We employed a between-subjects
design, with 12 participants finishing two tasks in each
condition. We ensured that each infographic appeared in
Task 2 three times in each condition across participants,
and counterbalanced the order of the remaining three info-
graphics for Task 1. Each study session began with a tutorial
about the tool (i.e., InfoColorizer or Baseline with websites).
Then, participants completed a training task on a different
infographic (than the four) with similar task requirements.
They could ask any questions about the tool. After, they
performed Task 1 and then Task 2 in order. In the end, they
filled in an exit-questionnaire and the Creativity Support
Index questionnaire [13], followed by a semi-structured
interview. For participants in the Baseline condition, we
also briefly demonstrated InfoColorizer and asked for their
comments. Each study session lasted around 1.5 hours and
each participant received $12 in compensation.

6.2.2 Results and Analysis: Task Performance
Fig. 8-a and Fig. 8-b show the completion time of Task 1 and
the resulting infographics count in Task 2, respectively. An
independent-samples t-test showed significant differences
on both the completion time (t = −4.83, p � 0.001) and
counts (t = 2.29, p = 0.02). This indicates that partici-
pants generated satisfying palettes faster with InfoColorizer
(µ = 197s , 95% CI = [173, 222]) than with Baseline
(µ = 306s, 95% CI = [265, 346]) for Task 1. Moreover,
for Task 2, participants created more satisfying infographics
with InfoColorizer (µ = 9.25, 95% CI = [5.7, 12.8]) than
with Baseline (µ = 4.7, 95% CI = [3.4, 5.9]).

6.2.3 Results and Analysis: Participants’ Feedback
To further answer S1, we analyzed the ratings on the exit-
questionnaire (Fig. 8-c; 7-point Likert scale with 1=“strongly
disagree” and 7=“strongly agree”). The questions include:
the tool is easy to use (Q1); the tool is easy to learn (Q2); with
the tool, it is easy to meet color preferences for certain ele-
ments (Q3); the tool reduces the burden for color adjustment
(Q4). We performed a Mann-Whitney test on each question.

For Q1, participants generally thought Baseline was eas-
ier to learn (U = 37.5, p = 0.014), which might be because
the interface of InfoColorizer was more complicated with
the recommendation function. Nevertheless, all participants
gave a positive rating (≥ 5) for InfoColorizer.

There was no significance on Q2 (U = 63.5, p = 0.32),
but InfoColorizer in general received more positive ratings.
This could be because it is equipped with the recommen-
dation that benefited novices by “reducing the search space”
(P6). After being demonstrated InfoColorizer, P1 using the
Baseline said: “It is exactly what I want, as it can alleviate my
burden to collect, assign and adjust colors.”

A significant difference was found (U = 31.5, p = 0.007)
on Q3, indicating that InfoColorizer allows participants to
easily colorize infographics under specific color constraints.
Among the participants using the Baseline, P10 complained:
“Sometimes I cannot get proper colors meeting preferences while
looking harmonious from the three websites, so I need to determine
colors in a trial-and-error process myself.” Additionally, P12
said that “I use ColorBrewer in my daily life, but the choices are
limited. I also feel inconvenient when I want to change a single
color in a certain palette, because the remaining colors cannot
be updated.” Participants from the InfoColorizer condition
reported that they also encountered such difficulties; how-
ever, they felt that InfoColorizer “integrates knowledge about
colors, semantics and emotions,” (P7) and “the recommendation
can solve these difficulties.” (P8).

Though no significance was found (U = 49.5, p = 0.091)
on Q4, InfoColorizer (µ = 6.25, σ = 0.87) had a higher
average score than Baseline (µ = 5.42, σ = 1.51) and a
smaller variance on Q4, indicating its stability in reducing
the burden for color adjustment. P17 using Baseline said: “I
had no idea whether a palette would work well for an infographic
before being applied, even if it looked fine on the websites. Thus,
I needed to keep trying based on my intuition.” This was also
echoed by Baseline users P1 and P12.

6.2.4 Results and Analysis: Creativity Support
To answer S2, we utilized the Creativity Support Index
(CSI) [13], which quantifies how well a tool can support
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TABLE 1
Participants’ scores on the five factors and the final CSI scores (the

higher the better) of InfoColorizer (I) and Baseline (B), with
independent-samples t-test results.

CSI Dimension I B T-test

Expressiveness 33.8 26.7 t = 2.84, p = 0.009
Exploration 35.2 26.5 t = 3.38, p = 0.003
Results Worth Effort 36.3 25.8 t = 9.71, p � 0.001
Immersion 32.5 27.2 t = 2.08, p = 0.049
Enjoyment 35.8 29 t = 3.85, p = 0.001

CSI 57.9 45.1 t = 4.75, p = 0.0001

users’ creativity based on a research-tested questionnaire.
One usage of CSI is to compare two tools used by people
from two groups for the same tasks, which is well-suited to
our study. Following the practices in the previous work [52],
[53], we asked users to rate the corresponding study system
on five factors: Expressiveness, Exploration, Results Worth
Effort, Immersion, and Enjoyment. Table 1 shows each fac-
tor’s scores and the calculated final CSI scores.

Overall, InfoColorizer received a mean CSI score of 57.9
(σ = 6.51), much better than that of Baseline: a mean of 45.1
(σ = 6.72). A independent-samples t-test showed a signif-
icant difference (t = 4.75, p = 0.0001), indicating InfoCol-
orizer performed considerably better than Baseline. More-
over, InfoColorizer significantly outperformed Baseline on
all the factors. The biggest difference existed in Results
Worth Effort. Though some recommended palettes were
inferior to their expectation, participants still thought the
overall recommendations were acceptable and the palette
refinement workflow of InfoColorizer was smoother than
Baseline. Thus, they could obtain qualified and satisfactory
palettes for an infographic with less effort. The experience
in Task 2 influenced how participants felt about the Ex-
pressiveness and Exploration of InfoColorizer and Baseline,
because they needed to be creative to provide as many solu-
tions as possible. Several participants reported that InfoCol-
orizer sometimes surprised them by recommending palettes
of different styles that they had never thought about, so
that they could explore many different possibilities. On the
contrary, P7 using Baseline said that “The websites can help
me search colors when I have an idea, but they cannot provide
me with ideas.” To further improve Expressiveness, P16 and
P17 suggested including more vague descriptive words into
InfoColorizer. The better performance on Immersion and
Enjoyment of InfoColorizer may be related to the fact that
it has a higher degree of integration than Baseline. This
was because participants could find colors under specific
preferences and assign them to elements within a single
system instead of several websites.

6.2.5 Results and Analysis: Participants’ Behaviors
We qualitatively investigated participants’ behavioral pat-
terns based on our observation, revealing that they adopted
different ways to get started, obtain the first palettes, modify
colors, and adjust color assignment.

Baseline. For Task 1, it was rare for participants to
use a complete palette directly from the online sources [6],
[2], [1], since none could meet all the color preferences.
Most participants started with elements having the con-
straints. We noticed that Coolers [2] was more popular for

them to get started. The reasons might be: 1) compared to
ColorBrewer [1], Coolers support searching palettes with
keywords; and 2) Coolers has more flexible interactions to
generate palettes with gradient and with over five colors
than Adobe Color [6]. After coloring these elements, partici-
pants usually chose colors from the color picker and swatch
embedded in the system for the remaining elements. The
swatch consisted of palettes pre-loaded from ColorBrewer
and imported by them from Coolor and Adobe Color previ-
ously. The adjustment of color palettes and color assignment
happened in various ways, including: 1) participants might
adjust colors both before and after obtaining the first com-
plete palettes; 2) some finished quickly only via one to two
adjustments, while others repeatedly assigned several colors
to one element and compared the corresponding results; and
3) they usually either focused on elements in an arbitrary
order or just from left to right, and they tended to adjust
elements locally if the elements were clustered visually.

For Task 2 without requirements, they relied more on
complete palettes in the provided tools by changing one
to three colors or just trying different color assignments.
When searching palettes in Adobe Color and Coolors, some
participants only focused on whether palettes were aesthetic
while others might filter palettes using keywords fitting
the infographic topic. In both tasks, we observed that all
participants did not use other online coloring tools, nor did
they use the color wheel and harmony rules provided by
Adobe Color. This might be because they were novice users
and unfamiliar with other tools and the rules.

InfoColorizer. Users behaved much more consistently
than Baseline on the two tasks. They started with specifying
preferences by inputting words, getting recommendations,
and bookmarked palettes they liked. They might adjust
one to two unsatisfactory colors by using the color picker,
swatch, or recommendation functions. More participants
requested recommendations again since it allowed them
to obtain many possible results. They often finished one
infographic in Task 1 within two requests. As for Task 2, they
usually got the first satisfactory result within two requests
and had bookmarked two to four palettes, from which they
could derive more palettes in the next request. We observed
that they had less hesitation and pauses during the creation
than participants using Baseline. This might be because
that InfoColorizer provided them with a more consistent
workflow, reduced their mental effort, and allowed them to
focus on points of interest.

6.3 Survey Study
To evaluate the quality of recommended palettes, we
conducted a survey study with infographic readers and
compared five conditions: artist-designed, InfoColorizer-
recommended, Baseline-crafted ColorBrewer-predefined,
and randomly-generated palettes.

6.3.1 Study Setup
We used the four infographics mentioned in Sec. 6.2. For
each infographic, a professional designer created one palette
for artist-designed condition and we obtained nine palettes
for each of the other four conditions. Specifically, for Info-
Colorizer and Baseline conditions, we utilized the palettes
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Fig. 9. Survey study results: the average scores on aesthetics and
readability with 95% CIs (the higher is better; *** denotes p < .001).

crafted in Task 2 of the controlled user study, because
no concrete preferences were set in Task 2. Thus, the
palettes were produced under the same settings among the
artist-designed, InfoColorizer, and Baseline conditions. For
the ColorBrewer condition, we only considered categorical
palettes and randomly assigned their colors to infographic
elements. For randomly-generated condition, we randomly
generated palettes and applied them to infographics.

We formulated the study as online surveys. Each survey
has four problem sets, each containing five pictures derived
from an identical infographic but colored with five palettes,
each for one of the five conditions. The artist-designed
palettes were repeated across all surveys; for the other
four conditions, the palettes were randomly selected from
the corresponding generated ones above. Therefore, each
survey contained 4 × 5 = 20 pictures. For each problem
set, we asked participants to provide two 7-point scores (the
higher is better), on color aesthetics and element readability.
We randomized the order of conditions within each problem
set, as well as the order of the problem sets.

6.3.2 Participants
We released the survey on Amazon Mechanical Turk, and
collected 102 responses, all valid. Their demographic in-
formation is: 81 males and 21 females, aged 17–57 (µ =
32.3, σ = 8.5), 0–16 years (µ = 2.2, σ = 3.5) of experience
in visualization or design, and all with normal color vision.
They completed the study on their own machines.

6.3.3 Results and Analysis
Fig. 9 shows the scores of five conditions on color aesthetics
and element readability. We can see that artist-designed
palettes received the highest average scores on both color
aesthetics (µ = 5.45, 95% CI = [5.31, 5.59]) and read-
ability (µ = 5.72, 95% CI = [5.59, 5.85]), respectively.
This is because these palettes were carefully designed by
the professional designer. Among the rest, InfoColorizer-
recommended palettes obtained the highest overall scores
in aesthetics (µ = 4.60, 95% CI = [4.44, 4.75]) and read-
ability (µ = 5.20, 95% CI = [5.06, 5.34]). A Friedman
test (used for comparing more than two conditions) indi-
cated significant differences among different methods for
aesthetics (χ2 = 261.27, p < 0.001) and readability (χ2 =
267.6, p < 0.001). Post-hoc Dunn tests with Bonferroni
adjustment (used for pairwise comparison) showed that
the score of InfoColorizer-recommended palettes was sig-
nificantly higher than that of randomly-generated palettes
both on aesthetics (z = 6.64, p < 0.001) and readability
(z = 6.11, p < 0.001), as well as significantly higher than
that of ColorBrewer-predefined palettes both on aesthetics

TABLE 2
Participants’ ratings in the interview study.

P1 P2 P3 P4

Q1 Tool is easy to learn 6 6 6 6
Q2 Tool is easy to use 7 6 4 5
Q3 Infographics element layers panel is intuitive 6 7 6 6
Q4 Specifying color preferences is useful 7 7 7 7
Q5 Iteratively refining the results is useful 6 7 6 7
Q6 Recommended palettes look good 6 4 5 5
Q7 Tool makes starting to design a palette easier 6 7 6 7
Q8 Tool makes the design process more effective 6 5 6 7

(z = 8.53, p < 0.001) and readability (z = 10.96, p < 0.001).
It is not surprising that InfoColorizer outperformed the
random condition because InfoColorizer had learned good
practice embedded in expert-designed infographics while
random palettes were sampled from the whole color space.
Before study, we thought that ColorBrewer might be better
than InfoColorizer on aesthetics but worse on readability.
However, the survey results show that InfoColorizer out-
performed in both aspects, indicating that even a good
predefined palette can have poor aesthetics and readability
because of improper color assignment. While there was
no significance between InfoColorizer-recommended and
baseline-crafted palettes on aesthetics (z = 0.69, p = 0.49),
the average score of InfoColorizer was significantly higher
readability than that of Baseline (z = 4.75, p < 0.001).
This indicates that InfoColorizer not only improved users’
creation efficiency as shown in Sec. 6.2, but also ensured
that the recommended palettes had at least the same level
of quality as user-crafted palettes with the Baseline on both
aesthetics and readability.

6.4 Interview Study
To investigate how the tool looks from the eyes of experts,
we conducted an interview study to collect in-depth quali-
tative feedback from graphic designers, in which they used
InfoColorizer to design palettes for infographics of their
own interests, in a more realistic setting.

6.4.1 Study Setup
We recruited four experts (two females and two males) with
over three years of experience in designing infographics
and visualizations from an online community. Each study
session started with a 10-minute survey about the tools or
methods they used to obtain palettes and the difficulties
encountered when using the tools. Then, they explored
InfoColorizer and asked questions after a short tutorial (20
minutes). Next, they completed a task (e.g., colorizing an
infographic freely) (20 minutes) and filled a questionnaire to
rate the system’s functionality (10 minutes). We encouraged
them to think aloud during the study. An experimenter was
responsible for answering questions and taking notes.

6.4.2 Results and Analysis
All participants could complete the task and their ratings
are shown in Table 2. Specifically,

Ease of Learning and Use (Q1, Q2). All participants
found InfoColorizer very easy to learn, as P1 explained “the
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tool is designed similar to tools I regularly use... layers and panels
are similar to document or photo editors.” The responses for
ease of use were mixed. P2 thought “the functions are pretty
intuitive” but P3 commented “some buttons are new to me... I
do not know what they do without explanations.”

Infographic Elements Visualization (Q3). They found
the visualization of layered elements (Fig. 6-C1) very intu-
itive. For example, P1 commented “this looks familiar to me,
just like the layers panel in Photoshop” and P2 gave similar
feedback that “if you are an Adobe user, you will understand
this immediately.” One limitation was that the visualization is
“missing the vertical spacial order”, as P1 explained “sometimes
it is hard to locate elements at the same horizontal location.” P1
and P2 also suggested supporting row selections, as P2 said
“I hope to select layer by layer... I usually select or edit elements
in a layer to bind or assign them the same color.”

Color Preference Setting (Q4). They gave the highest
ratings for the Color Preferences panel (Fig. 6-C1). Specif-
ically, P1 liked the combination of manual (i.e., color as-
signment) and automatic (i.e., vague preference) methods
and said “they are very complementary to each other... some are
manual but can see effects immediately... some are automatic but
need to re-run the model.” Besides, P4 particularly liked the
color binding feature and explained “it allows users to input
the relationships among the elements to the model... the model
won’t be able to know this information without human input.” P2
suggested that “it will be amazing if it can learn and memorize
my color preferences from my design history.”

Recommendation Quality (Q6). Most participants
thought the quality of the recommended palettes was
good, as P1 applauded that “the color contrast between the
background and foreground is good.” Two participants sug-
gested grouping the recommendations by similarity, as P4
explained that “I hope the model can group similar palettes
together, so I only need to try one from each group to quickly
find out which style is the best.” In addition, P3 asked for
more explanations behind each recommendation: “suppose
the system is already learning from professional designers, maybe
it can explain the recommendation by telling me the styles or
names of the designers, so I can learn their styles. Great for non-
expert designers to improve their skills by learning.”

Iterative Workflow (Q5, Q7). They thought InfoCol-
orizer made it easy to get started and that the iterative
refinement process was effective for producing high-quality
designs. For example, P2 commented that “usually I don’t
know what color I want at the beginning... so having some
recommendations is helpful.” P1 found the iterative refine-
ment process very effective and explained that “the initial
recommendation already looks good but a little bit diverse... after
I specify preferences, it narrows down the design space and
starts to give more personalized recommendations.” Similarly,
P4 also reflected on her design iterations and commented
that “at the beginning, the search space is usually large... with
the recommendations, I only need to review a few to identify what
styles fit the best, so I can quickly reduce the search space.” To
improve the design process, P1 hoped InfoColorizer “can
memorize my history, so the system will become smarter even at
the first recommendation.” P3 pointed out a limitation that “the
recommendations tend to be similar to what I selected in the last
round, even though I did not want to.”

Comparison to Existing Tools (Q8). The tools they

regularly use fall into three categories: 1) manual, such as
assigning colors in Photoshop or Illustrator, and 2) half-
manual, such as tools recommending high contrast colors
to a specified color, and 3) templates, such as themes in
PowerPoint. Compared to existing tools, most participants
thought InfoColorizer optimizes the palette design process
since it is more automatic and personalized. Compared to
the template tools, P2 commented that “it (InfoColorizer)
is more flexible than pre-defined themes... I can specify color
preferences and choose from a large set of options” and P3 added
that “pre-defined themes are not considering the specific design
I want to make... it always give you the same set of templates
and makes your design look similar to others.” Compared to the
manual or half-manual tools, P4 thought InfoColorizer is
more efficient since “manual is not scalable... I can process more
designs with the recommendation workflow.” All participants
mentioned that InfoColorizer can be used along with their
existing tools. P1 explained in detail that “Here (InfoColorizer)
we are starting from scratch. I hope to start from some pre-defined
themes... It is more a trade-off between quality and efficiency for
different use cases and scenarios.” These comments echo the
three challenges of existing tools that users are facing, as
described earlier in Sec. 1.

7 DISCUSSION

Here we discuss several aspects about InfoColorizer and our
studies, including limitations and potential solutions.

Generalization for Different Infographics. Our current
recommendation engine is designed for infographics that
can be described by the conceptual model in Sec. 4.2. How-
ever, there are some percentage of infographics containing
data charts (e.g., line charts, scatterplots). We observed
about 1% of such infographics in InfoVIF. While not a big
percentage, InfoColorizer may fail to recommend proper
palettes for these infographics, because embedded data is
not characterized in input features. This can be addressed
by collaborating with tools for data charts [22], [19]. For
example, to colorize an infographic with a bar chart, a user
can first obtain colors from Palettailor [35], assign them to
each bar as color preferences, and get recommended colors
for the rest elements with InfoColorizer. This process may be
further automated by integrating prior work on colorizing
data charts [62], [30] as the conditions of VAEAC.

InfoColorizer specifically focuses on recommending
color pallettes for infographics that have a very differ-
ent content and structure compared to natural images. To
achieve our goal, we employ a conceptual model (Sec. 4.2)
together with extracting various infographic-specific fea-
tures (Sec. 5.1). The model contains both artistic and graph-
ical data elements and describes an infographic from both
logical and spatial aspects, which also enables us to charac-
terize an infographic with three levels of non-color features.
Thus, with the power of VAEAC, we are able to capture
high-level design practices from a large collection of info-
graphics, and thus recommend suitable color palettes. In-
depth comparision of InfoColorizer with colorization tools
for natural images is left for future work.

Robustness. As the visual design of infographics is di-
verse, the rule-based feature extraction algorithm (Sec. 5.1.1)
may fail to obtain correct features. The failing cases mainly
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fall into two categories. First, the method cannot under-
stand complex clipart images, which often serve as semantic
backgrounds and may affect the color appearance of the
entire infographic. For example, it treats a rocket as several
separate shapes rather than as a whole. However, with
advanced computer vision techniques, semantic objects can
be integrated into our tree model, and thus we can still
apply our data-driven method to learn design practices
and recommend palettes. Second, the tree construction and
recommended palettes will be influenced (Sec. 5.2) if the
bounding boxes of some elements are detected wrongly. One
solution to address this problem is to allow users to correct
tree structures with the interface (Fig. 6-C1).

Explicit and Implicit Color Constraints. When rec-
ommending palettes, we only consider color preferences
explicitly assigned by users, and leave aside possible im-
plicit constraints exhibited in infographics. For example,
if a sequential palette is used for encoding data in an
infographic, our generated palettes may fail to remain the
relationship. Currently, a user has to specify the sequential
relationships using exact colors or vague words (e.g., Fig. 7-
B3). A solution can be to embed such relative color relations
(e.g., sequential) into the feature vector, and train VAEAC
to learn these patterns. Similarly, as infographics can benefit
from using gradient colors, integrating gradient colors into
the features would be interesting to explore.

Generalization and Penalization Trade-off. Our method
is data-driven, meaning that the style and quality of recom-
mended palettes depend on the training data. More training
data will likely enhance the model with generality and
accuracy. However, whether a palette is aesthetic or not
is still subjective. Currently, we choose VAEAC which can
generate diverse, as well as relevant, palettes (Appendix
Sec. B) to accommodate users with different aesthetic tastes.
One solution can be training a more personalized model
gradually based on the resulting palettes chosen by a user.

Considerations of UI design. We considered two ways
to display recommended results: palettes and infographic
previews. The former is more space-efficient but may be
less intuitive; there exists a trade-off. By mimicking Adobe
Illustrator, we chose to display the results as a list of palettes
and use layered rectangles to indicate the tree structure. We
did not receive any complaints about this design, as it is
used in many commercial infographics authoring tools. The
user can still preview the colored infographic by selecting
a palette. However, further studies are required to assess
these two designs. Also, our user interface can be further
improved. For example, integrating the operation panels to
the main canvas may streamline the whole workflow.

Limitations in Study Design. For the survey study,
we randomly assigned colors to infographic elements for
the ColorBrewer condition. Without manual adjustment,
adjacent elements may be assigned with the same color,
reducing the readability. However, this is a common sit-
uation in real world; and one of the challenges that we
address here is the color assignment problem. Further, we
note that the sample size of our interview study might
be small. However, we obtained deeper insights regarding
InfoColorizer and their infographic creation workflow, and
our controlled study with more users complements this
effect to some extent. Regardless, a future deployment study

may be needed to evaluate the usefulness of InfoColorizer
with more realistic settings for the long term.

8 CONCLUSION AND FUTURE WORK

We have introduced InfoColorizer, an interactive system
that supports effective infographic color palette design via
cogent recommendations. The system leverages a concep-
tual infographic model and deep learning techniques to
lower design barriers, support flexible color preference spec-
ification, and adapt palette generation to spatial relation-
ships of infographic elements. We have demonstrated the
effectiveness and usefulness of InfoColorizer through case
studies, a controlled user study, a survey study, and an
interview study. Our work opens several avenues for future
work. We plan to explore metrics to rank returned palette
recommendations, which can further reduce users’ effort to
examine and choose palettes. We also would like to support
more advanced color preferences such as relative lightness
and perceptual differences between two elements.
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[17] V. Dibia and Ç. Demiralp. Data2vis: Automatic generation of
data visualizations using sequence to sequence recurrent neural
networks. IEEE CG&A, 39(5):33–46, 2018.

https://colorbrewer2.org/
https://coolors.co/
http://massvis.mit.edu/
https://all-free-download.com/free-vector/svg-infographic.html
https://all-free-download.com/free-vector/svg-infographic.html
http://visdata.mit.edu/
https://color.adobe.com/


IEEE TRANSACTIONS ON VISUALIZATION AND COMPTUER GRAPHICS 14
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