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Fig. 1: lllustration of dual-level color grading for 360-degree images in VR. (A) Dual-level grading involves iterative adjustments of
global and local color parameters. (B-D) Three VR interfaces are designed to collect creators’ preferences for color-graded options
at the global and local levels to support personalized color grading. (B) Side-by-side: equirectangular projections of the options are
displayed adjacent to each other on a 2D plane. (C) Sequential: only one option is shown at a time, with the ability to switch between
different options. (D) Partial: corresponding segments of the two options are displayed simultaneously, with the ability to switch between
different segments. Blue and orange indicate different display areas.

Abstract— The rising popularity of 360-degree images and virtual reality (VR) has spurred a growing interest among creators in
producing visually appealing content through effective color grading processes. Although existing computational approaches have
simplified the global color adjustment for entire images with Preferential Bayesian Optimization (PBO), they neglect local colors for
points of interest and are not optimized for the immersive nature of VR. In response, we propose a dual-level PBO framework that
integrates global and local color adjustments tailored for VR environments. We design and evaluate a novel context-aware preferential
Gaussian Process (GP) to learn contextual preferences for local colors, taking into account the dynamic contexts of previously
established global colors. Additionally, recognizing the limitations of desktop-based interfaces for comparing 360-degree images, we
design three VR interfaces for color comparison. We conduct a controlled user study to investigate the effectiveness of the three VR
interface designs and find that users prefer to be enveloped by one 360-degree image at a time and to compare two rather than four

color-graded options.

Index Terms—Preferential Bayesian Optimization, color grading, 360-degree images, virtual reality.

1 INTRODUCTION

With the growing access to 360-degree cameras and virtual reality
(VR) headsets, more and more creators are engaging in capturing,
editing, and sharing 360-degree images in VR. Color grading is a
crucial editing process, where creators adjust color parameters (e.g.,
contrast and white balance) to achieve a desired look or mood, reflecting
their personal tastes and preferences. Color grading is important for
enhancing visual aesthetics and guiding viewer attention in 360-degree
VR experiences [33]. It involves primary grading to alter the global
colors across an entire image, and secondary grading to refine the local
colors of specific areas (Fig. 1-A). Since the perception of local colors
is influenced by their contextual colors, secondary grading needs to
consider the established global colors [11].

However, manual color grading is difficult since creators need to
experiment in a high-dimensional search space to find parameters that
match their preferences [16]. To alleviate these difficulties, several com-
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putational frameworks [15, 16,35] that leverage Preferential Bayesian
Optimization (PBO) have been proposed to free creators from this
inefficient manual adjustment. These frameworks tackle creators’ pref-
erences in a human-in-the-loop manner. Specifically, they iteratively
ask creators to compare images with different parameters, learn their
latent preferences with a Gaussian process (GP) based on the compar-
isons, and use efficient sampling strategies to select parameters for the
next round of comparison. Although effective, these frameworks only
focus on adjusting global colors, neglecting the refinement of local
colors that depend on global colors. Moreover, it is necessary to enable
creators to perceive and adjust the colors of 360-degree images directly
in VR, rather than on a 2D desktop, since human perception of colors
differs between VR and desktop environments [14,40]. However, the
user interfaces used in existing frameworks [15, 16,35] are designed
to display general 2D images on desktops in either a side-by-side lay-
out [35] or a grid layout [16], which may not be suitable for effectively
comparing 360-degree images in VR.

In line with these frameworks, we aim to facilitate creators with
PBO to adjust color parameters globally for an entire 360-degree image
and locally for a point of interest (POI) directly in VR environments.
This aim introduces two key challenges. First, learning contextual
preferences for local colors under dynamic global colors is difficult.
As shown in Fig. 2, users’ preferences for global colors (red lines)
remain constant, while their preferences for local colors (blue and
green lines) vary across iterations due to the changing global colors.
Second, it is unclear how to design an effective VR interface that
facilitates the comparison of 360-degree images at the global and local
levels. Specifically, 360-degree images are supposed to fully immerse
creators in a spherical space, making it difficult for creators to compare
multiple options within the same viewport simultaneously.
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Fig. 2: lllustration of iterative global and local color grading with PBO. The
x-axis of the four plots represents 1D color parameter values, and the
y-axis represents preference values. In each iteration, the latent global
preference G(x) remains the same (red lines), and the queried points
(circles) are used to obtain predicted global preference p, (x) (purple lines
and areas). However, local preferences L(-) vary across iterations (blue
and green lines) due to the changing global contexts, and the queried
local points (triangles) are associated with previous contexts.

This work proposes a dual-level PBO-based framework (Fig. 3) that
integrates global and local parameter adjustments. Our framework uses
a classical preferential GP [8] to learn preferences for global colors. To
address the first challenge of learning local preferences, we design a
novel context-aware preferential GP (Sec. 4) by integrating a multi-task
GP [10] into a classical preferential GP. Specifically, to enable the
integration of a multi-task GP, we take global colors as contexts or
tasks, utilize clustering algorithms to discretize continuous global con-
texts, and incorporate regression algorithms to obtain latent preference
values for unseen contexts to enable the prediction (Fig. 4). Computa-
tional experiments demonstrate the effectiveness of the context-aware
preferential GP (Sec. 4.4). To address the second challenge, we first
design three types (i.e., side-by-side, sequential, and partial) of VR
comparison user interfaces (Fig. 1). Then, we conduct a controlled
user study to evaluate the three user interfaces with two or four options
with different color parameters. Based on the results, we summarize
the advantages and disadvantages of the three types of VR interfaces
(Sec. 5.2.5) and find that users most preferred the sequential interface
with two color-graded options.

Our contributions include: (1) a dual-level PBO-based framework
integrating local and global color adjustments for personalized color
grading in VR; (2) a novel context-aware preferential GP that can learn
contextual preferences under dynamic contexts; and (3) an empirical
evaluation of comparison interfaces for performing 360-degree image
color grading in VR.

2 RELATED WORK

Our research builds upon literature on VR color grading, Preferential
Bayesian Optimization, and 360-degree content editing interfaces.

2.1 VR Color Grading

Existing research on VR color grading [9,22] mainly focuses on the
unique characteristics that VR devices offer. For example, a recent
study [41] enhances the color contrast in images by utilizing the dis-
parity between the left and right eye views brought by the stereoscopic
displays of VR headsets. Despite these advancements, facilitating users
to perform active color grading based on their individual needs receives
little attention. This oversight is significant given that colors in VR con-
tent not only play an important role in conveying aesthetics and mood,
but also serve as effective cues to guide viewer attention [19,26,42]. In
this work, we not only consider the immersive characteristics of VR by
investigating the design of VR comparison interfaces, but also fill the
gap by exploring personalized color grading.

2.2 Preferential Bayesian Optimization for Color Grading

Previous studies have formulated color grading [16,35] and other design
tasks [4,28,36] under human preferences as an optimization problem

and demonstrated that PBO is a well-suited algorithm for several rea-
sons. First, the objective functions to present users’ preferences are
black boxes, with their evaluations considered costly as they rely on
subjective user inputs. PBO facilitates finding satisfactory solutions
with relatively few iterations of queries to users. Secondly, when query-
ing users, PBO offers a simpler way of gathering feedback. Unlike
standard BO, which requires users to express their preferences with
absolute scores (e.g., “I rate colors in Image A as 6.5 out of 10”),
PBO allows users to provide relative preferences by comparison (e.g.,
“Image A has better colors than Image B”).

There are many variations of PBO-based frameworks for color grad-
ing. For example, Koyama et al. proposed novel search techniques by
constructing proper lines [17] and planes [16] to reduce optimization
iterations. Chui et al. [7] further developed a differential subspace
search technique for sampling from high-dimensional latent spaces
of generative models. Besides improving the computational perfor-
mance, Yamamoto et al. [35] offered users more freedom to express
their preferences by painting in specific areas to guide the parameter
search. However, these PBO-based frameworks focus on optimizing a
single and constant latent objective function, and thus cannot tackle our
problems that involve two levels of objective functions and the local
functions are conditioned on the global preference function.

2.3 Interfaces for 360-degree Content Editing

There are several non-immersive and immersive systems for editing
360-degree content. Non-immersive systems, including commercial
software such as Adobe Premiere and research prototypes [5, 18,29,
32], provide functions such as viewing [18,29], extracting fields of
view [32], and adding audio descriptions [5] with desktop-based user
interfaces. Although useful, these systems require users to switch
between desktop and VR headsets to examine the editing results. To
alleviate this tedious switching and provide benefits of “what you see
is what you get”, several immersive editing tools [12,24,25,37] have
been proposed. For example, Hartmann et al. [12] designed a VR
authoring interface to allow users to apply view-dependent effects to
360-degree content directly in VR. However, these immersive interfaces
lack support for comparing multiple editing results, which is essential
for users to determine the most suitable version of their edits. To fill this
gap, we investigate the effective VR user interface design for comparing
360-degree images with different colors.

3 PROBLEM FORMULATION AND OVERVIEW

In the following, we begin by introducing our problem formulation
(Sec. 3.1). Next, we provide an overview of the proposed dual-level
PBO-based framework (Sec. 3.2). We then describe the preference
learning process for global colors using a classical preferential GP
(Sec. 3.3). This serves as preliminary knowledge to understand how
GP is used for preference learning. With the preliminary knowledge,
we describe our novel context-aware preferential GP for contextual
preference learning for local colors (Sec. 4). Finally, we describe three
VR interfaces that allow creators to compare colors (Sec. 5).

3.1

This work aims to facilitate creators to adjust color parameters (e.g.,
color balance and contrast) globally for an entire image and locally for
individual POIs. We seek to identify the global and local parameters
that creators find most preferable. Importantly, the preference for
local colors is influenced by global colors [1], which serve as contexts,
necessitating consideration of this dependency in our approach.
Mathematically, suppose a creator seeks to adjust Q types of color pa-
rameters across an entire image and for a specific POI. We define a color
parameter space Q = [qa, b]Q where global and local parameters reside.
Let x be the global parameters and y be the local parameters for the POI.
Thus, we have x = [x|,xp, - .,xQ]T eQ,andy=[y;,y2, ,yQ]T cQ.
The color parameters are applied to the original images by modifying
the RGB values on a pixel basis using specific formulas [16,23]. For
example, let /] represent the original image and I, the color-graded
image. To adjust global brightness using xp,;, we multiply the pixel
values by a scalar: I, = xp,; - I;. In dual-level color grading, we first
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Fig. 3: Proposed dual-level PBO framework with three stages. The local
GP takes the output of the global GP as input (the dashed line).
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apply x3,; to all image pixels for global adjustment, and then apply yp,;
to pixels within the target POI area for local adjustment.

We formulate personalized dual-level color grading as a dual-level
black-box optimization problem. Specifically, the objective is to opti-
mize x and y to maximize the aggregate preference across the entire
image and the POI:

(x",y") = arg max (G(x) + L(y | x)) M

X,yeQ

Here, G : Q — R is the latent preference function for the global pa-
rameters that affect the entire image. L(y | x) : @ — R is the latent
preference function for the local parameters affecting the POI, rep-
resenting the desirability of y is conditional on the selected x. G(-)
and L(-) map parameter sets to real-valued scores, with higher values
indicating better alignment with user-specific preferences.

3.2 Method Overview: a Dual-level PBO Framework

We propose a novel dual-level PBO framework that iteratively opti-
mizes global and local parameters, dynamically conditioning the local
parameter selection in response to changes in global parameters each
cycle. As shown in Fig. 3, there are three stages in each iteration of the
PBO loop.

Stage 1: modeling user preferences with Gaussian processes.
PBO utilizes GP as a probabilistic model to capture user preferences.
Our PBO framework consists of two GPs: GPyjopq and GPpeqi- We
collect two sets of training data with comparisons given by users. With
the data, we first train the respective GPs to fit the observed comparisons.
Then, the fitted GP is leveraged to predict user preferences at new,
unobserved points in the domain Q. Specifically,

* Global level. GPyjppq is a standard preferential GP [8] to represent
the global latent preference function G(x). For GPyj,p,, We collect
M, comparisons after ¢ iterations, denoted as Dy = {X;; > Xjp | i =
1,...,M,}, where X;; > X;p indicates a user preference for x;| over
xj2. The M, comparisons involve N, queried points X; € £, denoted
as Xg=[x;|j=1,...,Ng|.

* Local Level. For GP,,,;, we propose a context-aware preferential GP
to represent the local preference function L(y | X). GPjyeq extends a
classical preferential GP with a multi-task GP, explicitly designed
to incorporate global colors as conditioning contexts for learning
contextual preference. Similarly, for GP),.,;, we gather M; compar-
isons, denoted as D; = {(yi1 | xi1) > (¥yi2 | x2) | i=1,...,M;}, and
N, queried points, denoted as V; = [(y; | x;) | j=1,...,Nj].

Stage 2: identifying informative query points. The second stage
involves selecting the most informative points that will be queried in
the current iteration. Points are considered most informative when
they offer the greatest potential to help find the global optimum. This
selection process is facilitated by an acquisition function o : Q — R,
which quantifies the potential of each point based on the fitted GP
model’s predictions. Following the previous research [35], we select
expected improvement (El) as our acquisition functions. Our selection
process is also dual-level.

* Global level. We calculate the acquisition function g,y for

global colors based on the predictions of GPyjope- We can obtain
npoints X1 = {X}+17~~~

;X | } that maximize 0gpqr, Which will
be queried in the current (¢ 4 1) iterations.

* Local level. We select the best set of local parameters for each xt 1
To achieve this, we obtain an acquisition functron (xl e Dased on the
predrctrons of GPyyeq and the context X/ ,, and we find one point

yt .1 that maximizes alowl.

t+1°

In total, we obtain n combinations of global and local parameters,
denoted as V| = {(ytl+1 | xtlﬂ),m 7(yf+1 \ xf_H)}, with each y; |
the most informative point under the condition of X; i1

Stage 3: engaging users for comparison feedback. In this stage,
users need to compare different global and local colors and provide
their preference feedback (see Fig. 5). Suppose x, is the favorite global
colors obtained in the last 7 iterations, and (y," | x;") is the favorite local
colors under the condition of the favorite global colors.

¢ Global level. Combining the selected pomts in Stage 2, we construct
options as Cgloba{ = {(yt ) Xy ) (yt+1a t+l) (y;l+17x?+1)}' We
apply these combinations of global and local colors to the target 360-
degree image and present the resulting images to users. The users
are asked to determine the most preferred option x5 regarding
global colors. Then, we update the comparison data as Dy = D, U
{xchosen . xi} where x' € {x;",x} |, X \ x"0%¢n and update
queried points as Xy = Xy U X4 1.

¢ Local level. We update the images by replacing the global param-
eters with x%°5¢" In other words, users will compare four options
that have the same global colors but different local colors. The lo-
cal colors are obtained in Stage 2. The options are Cjpeqr = {(¥;" |
Xchosen)/ (yt1+l ‘ Xchosen)7 e (yln_H ‘ Xchosen)}’ Suppose the most pre-
ferred option regarding local colors is (yos" | x<hosem) we can
update comparison data as D; = Dy U { (yhosem | xchosen) o (y | x')},

where (yi | Xi) € ytJrl UClocal \ (ychosen | Xchosen).

Next, we will describe a classical preferential GP (Sec. 3.3) and our
proposed context-aware preferential GP (Sec. 4) used in Stage 1, as
well as our proposed three VR interfaces used in Stage 3.

3.3 Preliminaries: Preference Learning for Global Colors

A GP consists of random variables such that every finite collection of
them follows a multivariate normal distribution [27]. PBO employs
preferential GPs to represent the latent preference function f(-) in Stage
1. Specifically, PBO first trains a GP to fit the observed pairwise com-
parisons. Then, the fitted GP is leveraged to predict user preferences
at new, unobserved points in the domain Q. We briefly introduce the
training and predicting phase of a standard preferential GP [8].

3.3.1 Training

Taking the comparison data D, and relevant queried points X as input,
GPyiopar does not estimate the latent preference function G(-) directly.

Instead, it estimates the latent function values g = [G(x1), ..., G(x,)] T
at the queried points X, via Bayes’ theorem [8,31]:
P(g)P(D,|g
P(g\Dg) - M. )

P(Dy)

Here, P(g|D,) is the posterior probability, reflecting how likely dif-
ferent values of g are. The posterior integrates the prior knowledge
about the distribution of g before observing any data (i.e., the prior
P(g)). The posterior also integrates the new information obtained from
the observed comparisons (i.e., the likelihood P(D,|g)). P(D,) is the
marginal likelihood, which acts as a scaling factor to ensure that the
posterior probabilities across all possible f sum to one.
Likelihood. The likelihgod P(Dg|g) is calculated as [2,16,17,35]:
g

P(Dglg) :HP X1 = Xp | &i1,8:2)
i=1

.

where g;; = G(x;1) and g = G(x;2) are the latent function values
corresponding to X;; and X, and s is a scale factor.

exp gll/s)

xp(gi1/5) + exp(gn/s)’ &




Kernel function. The prior P(g) in PBO is commonly calculated
from a zero-mean GP, where the correlations between the queried points
are captured by a Ny X N, covariance matrix. This matrix is constructed

using a kernel function K : © x Q@ — R. The i/ element of the matrix
is calculated as K (x;,X;), where x;,x; € A.

Latent preference values g”4”. Unlike standard BO where the
absolute values of queried points are explicitly known, user preference
values are latent in PBO, since users give feedback in the form of
comparison. PBO uses the Maximum A Posteriori (MAP) estimation
to obtain latent values, denoted as g4 by minimizing the following
function [8,17]:

1 _
S(g)=—Y P(xii - xp | gi1,802) + EgTKG(Xng) 's. @
=

The obtained gM4” is a vector with N, elements representing user
preferences of the N, points in A,.

Hyperparameters. There are many types of kernel functions, each
consisting of a set of hyperparameters 6. The purpose of the train-
ing phase is to find the optimal 6 so that the GPyj,p, maximizes the
marginal likelihood P(Dg|6). The marginal likelihood serves as a loss
function, offering a measure of how well the GP model explains the
observed pairwise comparisons D, under the current set of hyperpa-
rameters. More details on how 6 is obtained can be found in [8, 17].

3.3.2 Predicting
P . : 1 i * _
In the predicting phase, given arbitrary N, points denoted as Xy =
[x; |i=1,...,Ng|, the fitted GPy,pq can predict the user preferences
g" = [G(x}),...,G(x},)]T in the form of a Gaussian distribution g* ~
8
N (g, Zg), where X is a N x N, covariance matrix. The mean pg is
a vector with Né, elements, each representing the expected preference
value at a point in A'*:

g = K(ngxg)K(ngXg)_]gMAP~ ®)

4 CONTEXTUAL PREFERENCE LEARNING FOR LOCAL COLORS

To model users’ contextual preferences over local colors in the first
stage, we need to consider the influence of global colors. A straightfor-
ward approach would involve collecting user preference feedback on
local colors within each global context and training a standard prefer-
ential GP for each context. However, this method becomes impractical
when users wish to experiment with multiple contexts due to its exten-
sive demand for user feedback. To alleviate this scalability issue, we
introduce a novel context-aware preferential GP that integrates a multi-
task GP with the standard preferential GP. Previous research [10] has
highlighted several benefits of multi-task GPs, including their ability to
leverage information sharing between related tasks, improve predictive
performance through learned task correlations, and enhance model
efficiency by reducing the need for large datasets in each task.

However, integrating a multi-task GP into a preferential GP is non-
intuitive for the following three reasons. First, they have different
input requirements. Multi-task GPs are traditionally configured to work
with absolute input values, while preferential GPs operate primarily
on comparisons, lacking mechanisms to incorporate contexts directly.
Second, existing multi-task GPs [10,21] are designed for discrete and
static contexts, which are observed in the training data. However, the
global color space is continuous, encompassing an entire spectrum of
possible values. Third, the global contexts are dynamically updated
in each iteration (Fig. 2), necessitating predictive capability over local
color preferences within unseen contexts.

Next, we will elaborate on our design of the context-aware preferen-
tial GP by tackling the different inputs as well as the continuous and
unseen contexts.

4.1 Connecting preferential and multi-task GPs

Similar to standard preferential GP, our context-aware preferential GP
takes comparison data D; and queried points ); as input. Differently,
each queried pointin )V, = [(y; | x;) | j = 1,...,N;] consisting of local

color parameters y; and associated global parameters x;. By consider-
ing each unique context x; as a related but distinct task, we leverage
a multi-task GP [10] to enable cross-contextual information sharing,
capturing subtle shifts in local preferences as global contexts vary.
Kernel Function. The kernel function K of the context-aware
preferential GP incorporates a commonly-used kernel design in multi-
task GP called intrinsic co-regionalization model [10,21], which utilizes
two kernels to capture the relationships among global colors and local
colors. The task kernel, K7, is responsible for computing the covariance
between different global color contexts, measuring how similar or
different they are from each other and how changes in one might
influence preferences in another. The local input kernel, Kj, on the
other hand, computes the covariance between local color parameters.
Then, the covariance matrix in the training phase is K7.();, V), and its
ij" element is the covariance between (y; | x;) € Yy and (y, | x;) € Vr:

Ki(yi | %i), (y; 1 %)) = Ki(yi,¥)Kr (%i,X;), (6)

Latent preference values Y47 We also use MAP estimation to
obtain IMA with the following function:

M,
S ==Y P((yir Ixi1) = (2 | X2) | lin Lo, gi1 8i2)
i=1
1
+ VKLY, @)

The obtained IMA® is a vector with N; elements representing user
preferences of the N; points in ;.

Predicting. We train our GP),,; in all observed local colors with
associated global colors based on };. This allows GP,,; to fully utilize
the observed data to capture the shared information among different
contexts. On the contrary, in the predicting phase, we aim to find
the best local colors regarding a specific global context rather than all
observed contexts. To achieve this, we adopt a Kronecker-structured
covariance matrix [21] in the predicting phase, since such structure
allows for obtaining predictions for a specific context easily.

Specifically, given a context x; and arbitrary N, points under this con-
text, denoted as V' = [(y;‘ |x;) | j=1,...,N/], we use the fitted GPjpeq
to predict users contextual preferences I} = [L(y] [ Xi), ..., L(y} | x)|T.
The fitted GPy,.q outputs I} as a Gaussian distribution with the mean
Ly as:

pi; = MMy fvee(IM47) ®)
M, :KI(Y*,Y)®KT(X[,X) 9
M, =K (Y,Y) ® Kr (X, X) (10

where Y* = [y} [yj € V/, Y =y, | yj € Vi, and X contains all
N unique contexts in );. Derived from the Kronecker product ® of
K;(Y,Y) (a N; x N; matrix) and K7 (X,X) (a N X N, matrix), M is
a N;N,; X N;N, matrix. Semantically, M; is the covariance of all the
combinations of N; local colors and N, global colors. Similarly, M,
is a N/ x N;N. matrix. vec(I¥4P) is a N)N, x 1 matrix, generated by
reshaping IM4” to represent the latent preference values of the local
colors under all global colors (Fig. 4).

4.2 Discretizing Continuous Global Contexts

To address the continuous nature of global color spaces, we draw inspi-
ration from previous research [38] and discretize these global contexts
into a finite set of discrete contexts through four key steps: clustering
global colors, selecting representative contexts, transforming local col-
ors, and updating the kernel functions. Initially, a K-means clustering
algorithm is applied to the set of queried global colors X, yielding k
distinct clusters {Cy,Cy,...,Cy }. Subsequently, for each cluster C;, we
determine a representative point ¢;, which is the global color within the
cluster that exhibits the highest preference value according to gMA”.
These points then serve as the discrete contexts for subsequent model-
ing. Next, the set J; = {(y, | x;)} is transformed into Y}’ = {(y; | ¢;)}.
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Fig. 4: lllustration of the training and predicting phase of our context-
aware preferential GP. The red arrow in (B1) represents that we obtain
the contextual preference p; based on regression results. (B2) and (B3)
show the same step with a more intuitive illustration.

Table 1: Training accuracy under different context numbers and parame-
ter dimensions. Boldface highlights the best results in discrete contexts.

# Discrete Context Continuous

510 15 20 ‘ Context | T-value
2D | 0831 0798 0856 0794 | 0784 0.080
6D | 0659 0700 0683 0685 | 0682 0.964
10D | 059 0.607 058 0568 | 0604 0.999
14D | 0653 0767 0668 0682 | 0813 0831
18D | 0.827 0856 0853 0.958 | 0786 | 0.019 (x)

where ¢; corresponds to the representative context of the cluster con-
taining x;. Finally, the computation of the kernel in Eq. 6 will be
updated by replacing x; with ¢;:

Ki((yi | i), (yj | ¢;)) = Ki(yi,y;j)Kr (ci,¢j), n
These updates subsequently influence the computation of latent local
preference values in Eq. 7 and predictions in Eq. 8.

4.3 Generalizing to Unseen Contexts

In Stage 2 of each iteration to determine the next (%ueried points at local
level, we encounter new global colors A; 1 = {x,, |,---,X | }, which
include contexts not previously observed in the training data of GP,c-
Consequently, these new contexts lack corresponding latent preference
values in /AP making the calculation of the mean ;' infeasible using
Eq. 8. To address this issue, we employ regression models to establish
a relationship between the known preferences in )V, and IMAP | This
model is then used to extrapolate latent preference values for the unseen
contexts within X; ;. Once these new values are determined, we
expand the vector vec(lMAP ) to include these additional preferences,
transforming it into a N; (N + 1) x 1 matrix. Simultaneously, the matrix
X, representing all contexts, is updated to a (N, + 1) x (N, + 1) matrix
to incorporate the new global color contexts. This expansion enables the
predictive function to work for these previously unobserved contexts
(Fig. 4-B), thereby maintaining the robustness and adaptability of our
framework for global colors that dynamically change. Thus, for an
unseen global context denoted as Xy, we have:

Wi = MM, vee (i) (12)
M; :K](Y*,Y)®KT(X,‘,XU{XHCW}) (13)
M2:K](Y,Y)@KT(XU{xnew},XU{xnew}) (14)
vec(lﬁ'{)ﬁzed) = vec(IMP) @ Lnew (15)

where @ denotes the concatenation of the original vector with the
new latent preference values lyew, calculated or estimated for the new
global contexts.

4.4 Ablation Studies

We conduct experiments with synthetic functions to evaluate our pro-
posed local context-aware preferential GP with two goals: (1) to assess
the effects of different numbers of contexts (Sec. 4.2), and (2) to inves-
tigate the effectiveness of different regressors (Sec. 4.3).

Setup. We first implement our dual-level PBO framework (Sec. 3.2)
with BoTorch [3], a widely-used BO library. We use Ackley functions

Table 2: Predicting results under different context numbers and parameter
dimensions with SVR. Boldface highlights the closest results to GT.

# Discrete Context Continuous

‘ Ground ‘ P-value
Truth (GT) 5 10 15 20 Context

2D 8.519 8960 0.706  0.035 0.012 0.002 0.002 ()
3D 2.560 4769 2436  0.778 0.378 0.001 0.041 (*)
4D 4.696 6.303 5206 5324 3482 0.035 0.005 ()
5D 8.778 13.199 10.877 11.908  8.654 1.068 0.001 (*)
6D 16.608 22128 21.130  21.692 17.343 11.600 0.028 ()

Table 3: Predicting results under different context numbers and regres-
sors with 2D parameters. Boldface highlights the closest results to GT.

# Discrete Context Continuous

‘ Ground ‘ Pvalue
Truth (GT) 5 10 15 20 Context

Polynomial 8.519 5710 0.460 0.090 0.023 0.005 0.013 (x)
Random forest 8.519 6.188 0.842 0.036 0.012 0.007 0.049 (x)
Gradient boosting 8.519 5.769 0.674 0.026  0.009 0.007 0.024 (x)
SVR 8.519 8.960 0.706 0.035 0.012 0.002 0.002 (x)

as both global and local latent preference functions, based on which
we synthesize users’ preference comparisons. Since color grading may
involve different numbers of parameters, we conduct multiple experi-
ments on global Ackley functions with varying dimensions (e.g., 2 to
18 dimensions), each dimension ranging from [0, 1]. The dimension of
a local Ackley function is twice the dimension of a global Ackley func-
tion, with the second half representing global parameters as a context
and the first half representing local parameters under the context.

We perform 20 trials for each combination of context numbers with
parameters or regressors. In each trial, we train GPyjypq on D, and
GPyycq1 on D; using about 100 random global or local preference com-
parisons, respectively. Training accuracy is calculated as the percentage
of correct comparisons made by the fitted GP,,; among the 100 local
training comparisons. Then, we randomly sample 25 unseen global
contexts and for each context, we use the fitted GPj,,; to predict values
at grid points obtained by dividing the parameter space 2 into equal-
sized intervals. To evaluate how well GP,,; can capture the variances
in local preferences under different unseen contexts, we calculate the
pairwise distances between predicted values under adjacent contexts.
The distances can be compared with the ground truth, which is obtained
from local Ackley functions by fixing the second-half parameters with
each context.

Results. Table 1, Table 2, and Table 3 show average training accu-
racy or predicting distances of the trials. The P-values are obtained from
Tukey’s HSD tests comparing the continuous context with the number
of discrete contexts that produced the best results. Specifically, there
are no significant differences in training accuracy among the various
numbers of contexts for most parameter numbers (Table 1), indicating
that reducing the number of contexts does not compromise training
accuracy. However, selecting a proper number of discrete contexts for
a given parameter number can significantly outperform continuous con-
texts in prediction (Table 2), regardless of the regressor used (Table 3).
Besides, regressors can influence the prediction, possibly because they
produce different [MAP

4.5 AQualitative Examples

Figure 5 demonstrates the color grading processes and results of a
standard PBO adjusting global colors, and our dual-level PBO adjusting
global and local colors, on five color parameters: red, blue, green
channels of white balance, contrast, and saturation. We ensure that
both the standard PBO and our dual-level PBO operate within the same
color parameter spaces (i.e., ), but we experiment with initializing
these parameter spaces differently. We observe that both the standard
PBO and our dual-level PBO can perform color grading either within
a specific color hue (e.g., orange in Fig. 5-top) or across broader hue
ranges (e.g., green, blue, to purple in Fig. 5-bottom). However, as
shown by the results after Iteration 3, our dual-level PBO offers better
control granularity, allowing for more nuanced adjustments on POIs,
such as varying local hues from the global hues or fine-tuning brightness
levels. Thus, our dual-level PBO provides creators with greater creative
flexibility to achieve detailed effects and facilitates them to obtain
images that can guide user attention to POIs within a 360-degree space.
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Fig. 5: Comparison of color grading processes and results between a standard PBO and our dual-level PBO. (A, C) Standard PBO for global-only
adjustment: Only global color parameters are applied to the entire image. The user compares options at the global level and selects their preferred
option in each iteration, as indicated by the green arrows. (B, D) Dual-level PBO for dual-level adjustment: Global parameters are applied to the
entire image and local parameters are applied to the POI. The user provides preference feedback in two steps during each iteration, as indicated by
the blue arrows. The first step is the same as the global-only adjustment. In the second step, the global colors of all options are updated to the
selected global colors, and the user compares the local colors to select their preferred option. Selected options are highlighted with light blue boxes.

5 VR USER INTERFACES FOR COLOR COMPARISON

To facilitate creators to compare color-graded options of 360-degree
images in VR and provide their preference feedback in the third stage,
we design and evaluate three VR comparison interfaces.

5.1 User Interface Design

Previous research [14, 40] has pointed out that the types of displays
and viewing environments can affect the appearance and perception of
colors. Given that 360-degree images are intended for consumption in
VR environments, it is crucial to support visual assessments directly
within VR to ensure color fidelity and perceptual accuracy. We consider
three VR interfaces (Fig. 1) as a part of our dual-level PBO framework
to compare color-graded options and judge the preferred option:

* Side-by-side interface adapts typical desktop interfaces for general
2D images [35] by displaying equirectangular projections of color-
graded options adjacent to each other on a virtual 2D plane, enabling
direct visual contrast.

Sequential interface fully utilizes the VR capabilities by enveloping
users within one 360-degree option at a time. Users can switch
between different options. This allows for a focused analysis of each
option before transitioning to the next.

Partial interface divides the entire VR space into equal areas, with
each area displaying the same slice of the target 360-degree image
but with different color parameters, enabling simultaneous color
comparison for the same slice across multiple options.

5.2 Controlled User Study

We carried out a controlled user study to evaluate different user inter-
faces for comparing and judging color-graded options for 360-degree
images within VR environments.

5.2.1

Participants and Apparatus. With our institutional review board’s
approval, we recruited 18 participants (P1-P18; eight females; ages 21-
30) with normal color vision. On a 7-point Likert scale, their average
familiarity with color grading was 5.1 (range: 2-7), and with VR was
4.4 (range: 1-7). Two participants edited photos and adjusted colors

Study Design and Setup

daily, seven weekly, seven monthly, and two annually. The study was
conducted with Meta Quest 2.

Conditions and tasks. We investigated two independent variables:
the type of user interface and the number of options. The types of
interfaces are described in Sec. 5.1: side-by-side, sequential, and partial.
For the number of options, we assessed two and four, which are typical
in existing PBO frameworks [8,35]. Thus, there were six conditions
in total. For each condition, participants were required to perform five
iterations, during which they needed to compare options and judge the
preferred options for global and local colors in order.

Procedure. The controlled user study followed a within-subjects
design, with each participant testing all six conditions. We prepared six
360-degree images and counterbalanced the order of the conditions and
images. Each participant joined the study individually. Each session
lasted 1-1.5 hours, beginning with tutorials on each user interface. We
allowed participants to familiarize themselves with the interfaces using
an additional set of 360-degree images in a training session. After
that, participants performed the comparison and judgment tasks at both
global and local levels for each condition, followed by completing a
7-point Likert scale questionnaire. This questionnaire assessed each
condition across five aspects (Fig. 6): overall rating (Q1), effectiveness
(Q2-Q5), user experience (Q6—Q8), usability (Q9-Q10), and workload
(Q11-Q16). We also recorded their interactions and head movements,
conducted semi-structured interviews to gather their opinions on each
condition, and asked them to rank the user interface designs after
completing all six conditions.

Ethics Statement. Before the user study was conducted, the re-
search procedures were reviewed and approved by the Research Ethics
Committee of the Department of Engineering at the University of
Cambridge under Application No. 459. Written consent forms were
obtained from the participants before they attended the study.

5.2.2 Results and Analysis: Ratings

Figure 6 presents the ratings of the three interfaces across two and
four options. To assess statistical significance, we employed the Fried-
man test on the three interfaces (the statistics are reported below),
followed by post-hoc Wilcoxon signed-rank tests for pairwise compar-
isons among them (the statistics are annotated in Fig. 6).

Overall ratings (Q1). Significant effects of interfaces were found
for both the two (¥% = 9.7, p < 0.01) and four (32 = 20.6, p < 0.001)
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better. The questions cover overall preferences (Q1), effectiveness in comparing global (Q2) and local (Q4) color differences, effectiveness in judging
preferred global (Q3) and local (Q5) colors, immersion (Q6), enjoyment (Q7), consistency (Q8), ease of use (Q9), ease of learning (Q10), mental
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Fig. 7: Completion time for comparison and adjustment (A) and average
head movement angle per unit of time (B).

options. For two options, participants significantly liked sequential over
side-by-side and partial. For four options, participants significantly
liked sequential over partial, side-by-side over partial.

Effectiveness (Q2—-Q5). At the global level, significant effects of
interfaces were found for perceiving global color differences (Q2)
among four (¥ = 15.7, p < 0.001) options, and judging preferred
global colors (Q3) among two (752 = 8.8,p < 0.05) and four (xz =
11.0, p < 0.01) options. For two options, the pairwise comparisons
show that no significance existed between sequential and side-by-side,
side-by-side and partial. This was because the three interfaces had
their unique benefits for comparing two options at the global level.
Specifically, “the sequential mode allows me to observe the color
changes by switching options and experiencing how each one feels in
the entire space” (P4), “I can make decisions quickly with the side-
by-side mode since it provides thumbnails within my viewport” (P15),
and “the difference between the two options around the dividing line in
the partial mode is easy to perceive” (P7). However, for four options,
participants found sequential and side-by-side were significantly more
effective than partial, since “dividing into four segments in partial
mode makes it difficult to imagine and assess the overall aesthetics of
each option” (P9).

At the local level, the three interfaces showed significantly different
effectiveness in perceiving local color differences (Q4; two: y2 =
12.7, p < 0.05; four: x> =21.8, p < 0.001), and judging preferred local
colors (Q5; two: x2 = 13.0, p < 0.05; four: ¥%=20.3, p < 0.001). The
pairwise comparisons show that sequential was overall better than both
Side-by-side and partial for local colors, regardless of the number of

represents p < 0.05 and

options. side-by-side and partial were inefficient mainly because “they
require me to shift my eyes and even turn my body between different
options” (P3), “they cost extra effort for me to locate where the POI
is” (P17), and “the colors not belonging to POIs disturb me during
eye shifting” (P10). On the contrary, the sequential mode can avoid
the above issues since “I only need to focus on the POI and switch
options with the controller without moving my head” (P3). Besides,
side-by-side received complaints that “the POI is too small to observe
the local colors, but I don’t want bigger displaying areas, which then
require more eye shifting” (P12).

User Experience (Q6—-Q8). Significant effects of interfaces were
found for both the two and four options regarding immersion (Q6;
two: x2 =28.5,p < 0.001; four: x> = 16.4,p < 0.001), enjoyment
(Q7; two: x2 =17.0,p < 0.001; four: x> = 13.8,p < 0.001), and
consistency (Q8; two: x2 = 17.4,p < 0.001; four: x> =18.6,p <
0.001). Specifically, sequential and partial were significantly more
immersive (Q6) than side-by-side, regardless of the number of options.
P12 stated, “The sequential and partial modes wrap me entirely and
allow me to feel more details of each option, such as its light, shadow,
and overall atmosphere.” Sequential were significantly more enjoyable
(Q7) and consistent (Q8) than partial regardless of the number of
options. Partial was regarded as “strange” (P4), “unnatural, and even
scary” (P15) because “repeated segments stitched together wouldn’t
appear in the real world” (P7). Although sequential were significantly
more enjoyable (Q7) and consistent (Q8) than side-by-side under two
options, no significance existed under four options. This is because

“the sequential mode with four options contains too many details and

makes me feel overwhelmed” (P14).

Usability (Q9-Q10). Significant effects were found for both the two
and four options regarding ease of use (Q9; two: 2 = 13.8, p < 0.001;
four: x2 =22.3,p < 0.001) and ease of learning (Q10; two: x> =
8.0, p < 0.05; four: ¥% =20.4,p < 0.001). No significance existed
between sequential and side-by-side under two options, since “both
have similar practices in 2D photo editing software” (P1). However,
side-by-side was significantly easier to use (Q9) and learn (Q10) than
sequential with four options, which was overwhelming; and partial,
regardless of the number of options, due to its relatively novel design.

Workload (Q11-Q16). Significant effects were found on physical
demand (Q12; two: ¥ =22.7, p < 0.001; four: 2 =31.1,p < 0.001),
performance (Q14; two: 22 =11.8,p <0.01; four: y2=12.1,p<
0.01), effort (Q15; two: x2 = 8.5,p < 0.05; four: ¥2=18.6,p <
0.001), and frustration (Q16; two: ¥2 = 10.6,p < 0.01; four: % =
14.4,p < 0.001). No significant difference existed between sequen-
tial and side-by-side, except that sequential was significantly more
physically demanding than side-by-side for four options due to body
movement. Partial required significantly more workload than sequen-
tial and side-by-side, since “the options are distributed in different
directions, forcing me to glance around, while with the sequential mode,
I can choose whether to turn my body or focus solely on the POI” (P2).
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Fig. 8: Examples of how the participants’ facing direction changed throughout the elapsed time with the three interfaces. The radius represents the
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Fig. 9: Participants’ rankings of the three user interfaces, including overall preference and their breakdown of preferences when comparing two
options, four options, global colors, and local colors. SS = Side-by-side, SQ = Sequential, and PT = Partial.

5.2.3 Results and Analysis: Participants’ Behaviors

To have a more granular understanding of how the participants used
the three interfaces, we also analyzed participants’ behaviors based on
logged user interactions and head movements.

Completion time. In each iteration, the participants were re-
quired to select the options with their most preferred colors at the
global and local levels, respectively. Figure. 7-A shows the time
they used for comparison and judgment. We employed the Fried-
man test, followed by post-hoc Wilcoxon signed-rank tests. Signif-
icant effects of the interfaces were found in all the following com-
binations: global colors of two options (¥2 = 35.0,p < 0.001), lo-
cal colors of two options (¥2 = 25.8,p < 0.001), global colors of
four options (y2 = 40.4, p < 0.001), and local colors of four options
(x*> = 42.2,p < 0.001). The pairwise comparisons show that there
were no significant differences between sequential and partial across
the four combinations. However, sequential and partial required signif-
icantly more time than side-by-side across the four combinations. This
is because “the sequential and partial mode exposure more informa-
tion and details to me, and consuming the details takes time” (P16).
Although more time-consuming, participants appreciated the detail and
immersion provided by sequential, as selecting appropriate colors to
enhance image appearance in the VR environment was more important
to our participants. An extreme example was P13, who stated, “When
adjusting colors for my 2D photos, I often check whether the colors
look good on others’ smartphones. The same applies to 360-degree
images. Examining the images in the environments where my audience
will consume them is important.”

Head movement. Figure 7-B illustrates the participants’ average
head movement angle per unit of time across the four combinations.
Significant effects were found: global colors of two options (> =
83.3,p < 0.001), local colors of two options (x* =74.0,p < 0.001),
global colors of four options (¥2 = 105.2, p < 0.001), and local colors
of four options (¥2 = 96.4, p < 0.001).

Figure 8 illustrates some representative examples of how our partici-
pants moved their heads when using the three interfaces. Specifically,
in the side-by-side mode, users made small head movements to com-
pare options within their field of view (Fig. 8-A). Similarly, in the
partial mode, since all options were displayed at once but distributed
in the entire space, users moved their heads more widely to compare
them. Interestingly, we found many participants relied on the dividing
line, which allowed them to distinguish between options with minimal
head movement. They often started at the dividing line and gradually
explored both sides. For example, as shown in Fig. 8-B, a person might
start facing one direction, shift left and right, and then gradually turn to

face the opposite direction to repeat the left and right shifting. In the
sequential mode, we found two opposite representative user behaviors.
As shown in Fig. 8-C1, some users made a complete turn for each
option since only one option was displayed at a time. However, it was
tiring to make several complete turns to view all options. Thus, after
familiarizing themselves with the entire scene, some other users only
focused on a specific area of interest and limited their head movement
to that section (Fig. 8-C2).

5.2.4 Results and Analysis: Rankings

We asked the participants to rank the interfaces and option numbers
after they experienced all six conditions.

Rankings of the interfaces. Figure 9 shows our participants’
rankings of the three interfaces. The Friedman tests revealed sig-
nificant differences in their preferences, including overall preference
(x* = 16.0, p < 0.001) and breakdowns when comparing two options
(x* = 10.8, p < 0.01), four options (x% = 16.4, p < 0.001), global col-
ors (3% = 14.1,p < 0.001)), and local colors (32 = 11.4,p < 0.01).
Specifically, users significantly preferred sequential overall the most,
as well as for two options and local colors. However, there were no
significant differences between sequential and side-by-side for four
options and global colors. These ranking results align with the detailed
ratings shown in Fig. 6.

Rankings of numbers of options. Five out of eighteen participants
preferred four options, which allowed them to indicate their color pref-
erences more efficiently by comparing larger batches at once. The other
thirteen participants preferred comparing and judging the colors of two
options in VR for three reasons. First, the 360-degree images carried a
lot of information, especially when they wrapped the users and took up
the entire space, so comparing four options was overwhelming for most
participants. Second, some participants mentioned that afterimages
interfered with their ability to judge the four options in the sequential
mode. For example, P3 said, “When switching options, the previous
one stayed in my mind, affecting my judgment of the next color. This
caused interference when the four options were displayed sequentially.
However, with only two options in the sequential mode, this issue didn’t
occur. Similarly, there was no interference in the side-by-side mode
because I could compare them at the same time.” Third, for the sequen-
tial and partial modes with four options, participants often struggled
to remember the associations between the options and the joystick or
displayed directions. This difficulty led them to find and check the
options back and forth by pushing the joystick or turning their bodies
in different directions.



5.2.5 Summary

Our results indicate that creators showed the highest preference for the
sequential interface with two color-graded options. In the following,
we summarize our findings regarding the strengths and limitations of
the three interfaces.

Sequential. The sequential mode with two options is the preferred
condition for comparison and judgment at both global and local levels.
It offers high immersion for participants while maintaining a manage-
able workload, enabling them to observe the details of a 360-degree
image effectively. In contrast, four options are less effective due to the
afterimage phenomenon, which interferes with users’ ability to make
comparisons and judgments. Moreover, four options place a greater
burden on users to associate the options with their display locations.

Side-by-side. The side-by-side mode is more effective for compar-
ing global colors than local colors, regardless of the number of options.
It provides thumbnails of all options in the form of 2D projections
within a user’s field of view, minimizing physical workload. However,
it thereby suffers from a small display area for POIs and makes it
challenging to imagine how a scene looks and feels in VR.

Partial. The partial mode with four options is the least preferred
condition for both global and local color comparisons. It is physically
demanding and creates a strange visual experience with the whole space
divided into four segments. While the partial mode with two options is
also considered unrealistic, it retains relatively high immersion and is
learnable for users. Additionally, the mode is effective for comparing
colors along the dividing line.

6 DiscussION

This section discusses our proposed algorithm and interfaces from
various aspects, limitations, and possible solutions.

Generalizing to different parameters and other images. The user
study in our work focused on common parameters such as color bal-
ance and brightness, following the practices of previous research [16].
However, our framework can be generalized to handle other aspects of
image editing, such as lens shading and color curves, as long as they
can be quantified using scalar values. The optimized parameters in our
method are highly coupled with individual images. It aligns with the
common practice of general users, who often edit images individually
and adapt their manual parameter adjustment according to the content
and style of each image. In this regard, our method can facilitate these
user scenarios by automating the parameter optimization process for
individual images. However, the learned user preferences for a specific
image cannot be easily generalized to other different images. To in-
crease the generalizability, a potential extension could be to capture
the relationships between user feedback and image features [30]. This
allows the framework to initialize the parameter values for new im-
ages based on the learned relationships, before further optimizing the
parameters based on user feedback.

Considering the unique characteristics of 360-degree images.
The core difference between adjusting 360-degree image colors in VR
and desktop environments, which the proposed method addresses, lies
in how we present color-graded options to users. 360-degree images
are closely associated with VR because they are best experienced in
this medium. Investigating suitable VR interfaces is as important
as proposing an effective optimizer (i.e., GP in our work), because
interfaces can allow users to express their implicit color preferences
accurately, thereby laying the foundation for the optimizer to model
correct color preferences. As to our context-aware preferential GP, it
has generalizability across both 2D and 360-degree images. However,
there are opportunities to further tailor the algorithm to the unique
characteristics of 360-degree images. This could involve developing
specialized techniques to address the spherical distortion [34] inherent
in 360-degree images and ensure color consistency across the entire
panoramic view. Additionally, considering the crucial role of colors in
directing viewer focus in VR, future work could incorporate saliency
models [20,23] into our dual-level PBO-based framework.

Implications for VR comparison interface design. Although the
sequential mode with two options is generally preferred, each inter-
face for comparing 360-degree image colors in VR has strengths and

weaknesses. Future VR color-grading systems can combine the three
types of interfaces to maximize their benefits. For example, a system
could primarily utilize the sequential mode for comparison. To reduce
users’ cognitive load in associating options with their display locations,
the side-by-side mode can be incorporated to display small thumbnails.
This would be particularly helpful when navigating through more than
two options in VR. Additionally, to address the limitations of both the
sequential (e.g., inability to compare options simultaneously) and side-
by-side (e.g., limited POI display area) modes, the partial mode could
be employed. By placing the POIs of two options near the dividing
line, users can examine more details with minimal head movement.
Regarding the number of options, the sequential and partial modes can
overwhelm users when dealing with more than two options. This sug-
gests that the methods commonly employed on 2D screens to reduce the
number of iteration rounds, such as comparing multiple options using
sequential lines [17] or galleries [16], may not be applicable in VR
environments. Future research should explore alternative approaches,
such as developing more efficient acquisition functions, to accelerate
the optimization process in VR.

Limitations. While our proposed dual-level color grading method
can streamline the image editing process, we acknowledge that the
method has some limitations in unleashing creators’ creativity. First,
the dual-level PBO currently falls short of fostering unexpected results
that could inspire highly original and creative work. This limitation
arises because the acquisition functions currently used in Stage 2 lean
towards exploitation (i.e., refining results based on known preferences)
over exploration (i.e., searching for diverse and unexplored results). To
increase exploratory divergence, future research could develop acqui-
sition functions tailored to the dual-level PBO. Additionally, creators
could be given control over this balance based on their goals: those
seeking efficiency could prioritize exploitation to achieve satisfactory
results quickly, while those valuing creative diversity could emphasize
exploration to uncover more unconventional outcomes. Second, as
the dual-level PBO directly manipulates raw color parameters such
as contrast and color balance, some sampled parameters may lead to
disharmonious colors that fail to meet creators’ expectations. Future
work could investigate how to integrate our personalized algorithms
with color recommendation models [6, 13,39] to ensure parameter ad-
justments toward aesthetically pleasing outcomes. Third, the current
VR interfaces, while intuitive, only support option selection and limit
creators’ autonomy. Future work could explore ways to enable users
to express creative intent more freely, such as interactively constrain-
ing parameter spaces (e.g., defining hue ranges in Fig. 5), leveraging
domain knowledge [15], or selecting arbitrary local regions [35]. This
requires advancements in VR interaction design and integration of user
inputs into the dual-level PBO algorithm.

7 CONCLUSION

This work presents a novel dual-level PBO-based framework aimed at
facilitating personalized color grading for 360-degree images directly
in VR environments. By integrating both global and local color adjust-
ments, our framework advances the capabilities of existing PBO algo-
rithms, which have traditionally focused solely on global color grading.
To address the challenge of learning contextual preferences for local
colors under dynamic global contexts, we introduce a context-aware
preferential GP that incorporates a multi-task GP, enabling the effi-
cient prediction of local preferences across varying global conditions.
Additionally, our work addresses the need for effective VR interfaces
that allow creators to compare the colors of 360-degree images in an
immersive environment. Through a comprehensive evaluation of three
types of VR interfaces (i.e., side-by-side, sequential, and partial), we
identify the sequential interface as the most effective in facilitating
preference feedback, particularly when comparing two options.
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