

Generating Virtual Reality Stroke Gesture Data from Outof-Distribution Desktop Stroke Gesture Data

Lin-Ping Yuan, Boyu Li, Jindong Wang, Huamin Qu, Wei Zeng

VR interaction data

VR interaction data has many usages.

UX designers can provide users with stroke gestures as intuitive user input for triggering commands [1].

Researchers can visualize users' movement to get insights on space usage patterns [2].

Ousmer, Mehdi, et al. "Recognizing 3D trajectories as 2D multi-stroke gestures." ACM ISS 2020.
 Hubenschmid, Sebastian, et al. "Relive: Bridging in-situ and ex-situ visual analytics for analyzing mixed reality user studies." ACM CHI 2022.
 Martin, Daniel, et al. "Scangan360: A generative model of realistic scanpaths for 360 images." IEEE TVCG 2022.

Storytellers can utilize the gaze data to refine their design of virtual scenes [3].

Collecting VR interaction data is hard.

Reasons

۲

- A small user base
- Frequent deployment failures
- Inconvenient collection setups

The current VR datasets often have limited quantity and diversity.

Fail to support downstream applications.

• E.g., the accuracy rate is only about 68% in [2].

Lehman, Sarah M., et al. "ARCHIE++: A cloud-enabled framework for conducting AR system testing in the wild." IEEE TVCG 2022.
 Li, Eve Mingxiao, et al. "EnchantedBrush: Animating in Mixed Reality for Storytelling and Communication." Graphics Interface 2023.

Sythesizing VR interaction data

Ours

Scan path in 360 videos [1]

SaltiNet [2018]

Quantity can be increased efficiently.

Diversity is still restricted

because they only rely on existing VR interaction data

as model **input**.

Crowd motions [3]

Martin, Daniel, et al. "Scangan360: A generative model of realistic scanpaths for 360 images." IEEE TVCG 2022.
 Shen, Junxiao, John Dudley, and Per Ola Kristensson. "Simulating realistic human motion trajectories of mid-air gesture typing." IEEE ISMAR 2021.
 Yin, Tairan, et al. "The One-Man-Crowd: Single user generation of crowd motions using virtual reality." IEEE TVCG 2022.

Ground truth

Can desktop interaction data be an alternative?

Selected focus: planar stroke gestures

- Why desktop stroke gestures?
- Why is it possible to use desktop strokes to generate VR strokes?

VR strokes present additional dimensions.

Desktop strokes add diversity.

VR and desktop strokes share commonalities.

How can desktop strokes enrich VR stroke datasets while preserving the original characteristics?

Preliminary Studies

Datacata	VR dataset: 3DMadLabSD [1]
Dalasels	Desktop dataset: \$1 [2]
Pre-	Temporal resampling
processing	Normalization
Feature	Point-level features
extraction [3]	Segment-level features
Data analysis	Commonalities
Data allalysis	Additional dimensions

S	Length
iture	Turning angle
l fea	Curvature
leve	Velocity
oint-	Acceleration
Ğ	Jerk
	Path length
S	Starting and ending point distance
ture	Line similarity
l fea	Area of bounding box
leve	Length of bounding box diagonal
ent-	Angle of bounding box's diagonal
egm	Total tuning angle
Š	Overall sharpness
	Overall curvature

[1] Huang, Jinmiao, et al. "Gesture-based system for next generation natural and intuitive interfaces." AI EDAM 2019.

[2] Wobbrock, Jacob O., et al. "Gestures without libraries, toolkits or training: a \$1 recognizer for user interface prototypes." ACM UIST 2007.

[3] Tu, Huawei, et al. "A comparative evaluation of finger and pen stroke gestures." ACM CHI 2012.

Preliminary Studies – Findings

- Commonalities
 - Distribution shifts
 - Between VR and desktop datasets
 - Within VR or desktop datasets
 - Possible causes
 - input environments (i.e., VR or desktop)
 - stroke shapes
 - drawing speeds
 - other unknown factors

 \rightarrow Challenge 1: It is hard to generalize the models trained on VR strokes to desktop strokes that comes from unseen distributions (i.e., out-of-distribution).

Preliminary Studies -- Findings

- Additional Dimensions
 - Z vectors spread out the entire output space and overlap between different stroke types.

→ Challenge 2: It is hard to capture relationships between commonalities and additional dimensions from small original VR datasets.

We formulate the problem of generating VR strokes based on desktop strokes as a **conditional time series generation problem**.

→ We generate additional dimensions conditioning on commonalities.

To address the first challenge, we further formulate the problem as a conditional time series generation problem under **out-of-distribution circumstances**.

 \rightarrow Conditional domain-invariant generator with out-of-distribution generalization techniques [1] to deal with the distribution shifts.

- Conditional domain-invariant generator
 - Characterize latent distributions

- Conditional domain-invariant generator
 - Characterize latent distributions

Group all the VR strokes into several **latent** domains, whose distribution gaps are maximized [1].

➤ Individual factors (e.g., shapes, speeds)

✓ Domain-classifier

- Conditional domain-invariant generator
 - Learn conditional domain-invariant representations

Utilize adversarial learning to fool a domain discriminator that classifies domains.

Make the discriminator unable to differentiate strokes from different latent domains [1].

- Conditional domain-invariant generator
 - Discretize output space to address the second challenge

Evaluation

FIEEE VR 2024

- Comparison with baselines
 - Purposes
 - assess the generalizability
 - examine the influence of training data size on model performance
 - Baselines
 - conditional time series generative models without integrating out-of-distribution generalization techniques
 - Training and testing sets
 - drawn from different distributions

	FD	Hausdorff	MMD_linear	MMD_rbf	MMD_poly
RCGAN	0.021814	0.657808	0.003368	0.006400	0.001685
TimeGAN	0.020063	0.879646	0.008755	0.013145	0.002367
SigCWGAN	0.046372	0.993806	0.015546	0.030862	0.002329
Our Model	0.006323	0.551768	0.000272	0.000799	0.000160

Evaluation

- Ablation Studies
 - Output space discretization
 - Loss functions of the generator

	random class labels	z vector cluster labels
FD	0.030495	0.006323
hausdorff	0.667595	0.551768
mmd_linear	0.010434	0.000272
mmd_rbf	0.020506	0.000799
mmd_poly	0.001086	0.000160

Table 2: Abalation studies on output space discretization.

Table 3: Abalation studies on the loss functions of the generator *G*.

	$\mathcal{L}_G(G,D)$	$\mathcal{L}_{L2}(G)$	$\mathcal{L}_G + \mathcal{L}_{L2}$
FD	0.134043	0.013179	0.006323
hausdorff	1.121143	0.559428	0.551768
mmd_linear	0.071677	0.000008	0.000272
mmd_rbf	0.129512	0.001704	0.000799
mmd_poly	0.006074	0.000285	0.000160

Applications

• VR stroke prediction with CoSE [1] models

A: Trained on 5000 instances of synthesized VR cat sketches

B: Trained on 100 instances of real VR cat sketches

- → Our approach can make the prediction task possible with synthesized VR strokes, although the task is impossible with limited real VR strokes.
- \rightarrow It reduces the burden to collect real VR strokes.

[1] Aksan, Emre, et al. "Cose: Compositional stroke embeddings." NeurIPS 2020.

Applications

• VR stroke classification with different classifiers [1, 2]

Results with deep learning classifiers [1]

	Accuracy
800 real VR digits	96.67%
800 real VR digits + 1600 synthesized digits	99.63%
1600 synthesized digits	84.07%

The DL model can achieve satisfactory accuracy with synthesized datasets alone.

Results with template-based classifiers [2]

Accuracy may decrease when the amount of synthesized data exceeds a threshold.

→ The use of generated VR strokes in downstream applications needs to consider the characteristics of specific algorithms.

Mohammadi, Seyed Saber, et al. "Pointview-gcn: 3d shape classification with multi-view point clouds." IEEE ICIP 2021.
 Ousmer, Mehdi, et al. "Recognizing 3D trajectories as 2D multi-stroke gestures." ACM ISS 2020.

Take-home messages

- Lessons learned for generating other types of VR interaction data?
 - Determining commonalities and additional dimensions.
 - Paying attention to distribution shifts.
- Reflections on the use of VR and desktop datasets
 - Our method does not require collecting real VR and desktop datasets under identical conditions thanks to its generalizability.
 - A limited real VR dataset that is insufficient for concrete applications might be adequate for training our generative model.
 - The use of generated VR strokes in downstream applications needs to consider the characteristics of specific algorithms.

Future work

• From planar VR strokes [1] to non-planar VR strokes [2]

- Propose novel reference frames by adopting concepts such as gesture task axes [3] or scaffolds, rather than using the traditional Cartesian coordinate system.
- Reconsider the selection of commonalities and additional dimensions.

Arora, Rahul, et al. "Experimental Evaluation of Sketching on Surfaces in VR." ACM CHI 2017
 Yu, Xue, et al. "Scaffoldsketch: Accurate industrial design drawing in VR." ACM UIST 2021.
 Vatavu, Radu-Daniel, et al. "Relative accuracy measures for stroke gestures." ACM International Conference on Multimodal Interaction 2013.

Generating Virtual Reality Stroke Gesture Data from Outof-Distribution Desktop Stroke Gesture Data

Contributions:

- We explore generating VR stroke gesture data from desktop stroke gesture data as an alternative input source that is out-of-distribution.
- We propose a time series generative network with novel designs of output space discretization and conditional domain-invariant representation learning.
- We develop two applications that show the effectiveness and usefulness of the datasets enriched by our methods and demonstrate the potential opportunities opened by our methods.
- Code and datasets:
 <u>https://github.com/yuanlinping/VRStrokeOOD</u>

