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Generating Virtual Reality Stroke Gesture Data from Out-
of-Distribution Desktop Stroke Gesture Data
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UX designers can provide users with stroke gestures as intuitive
user input for triggering commands [1].

[ Ex-Situ Analysis (Desktop)|

Storytellers can utilize the gaze data to refine their
design of virtual scenes [3].

Researchers can visualize users’ movement to get insights on
space usage patterns [2].

[1] Ousmer, Mehdi, et al. "Recognizing 3D trajectories as 2D multi-stroke gestures." ACM ISS 2020.
[2] Hubenschmid, Sebastian, et al. "Relive: Bridging in-situ and ex-situ visual analytics for analyzing mixed reality user studies." ACM CHI 2022.
[3] Martin, Daniel, et al. "Scangan360: A generative model of realistic scanpaths for 360 images." IEEE TVCG 2022. 3



Collecting VR interaction data is hard.

* Reasons
* A small user base

Frequent deployment failures
Inconvenient collection setups n
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The current VR datasets often have Fail to support downstream applications.
limited quantity and diversity. » E.g., the accuracy rate is only about 68% in [2].

[1] Lehman, Sarah M., et al. "ARCHIE++: A cloud-enabled framework for conducting AR system testing in the wild." IEEE TVCG 2022.
[2] Li, Eve Mingxiao, et al. "EnchantedBrush: Animating in Mixed Reality for Storytelling and Communication." Graphics Interface 2023. 4



Sythesizing VR interaction data

SaltiNet [2018] Ours Ground truth

= |

n path in 360 videos [1

(b) Jerk-Minimization (c) RNN (d) GAN-Transfer

Mid-air gesture typing [2]

Crowd motions [3]

[1] Martin, Daniel, et al. "Scangan360: A generative model of realistic scanpaths for 360 images." IEEE TVCG 2022.

Quantity can be increased
efficiently.

@ Diversity is still restricted
because they only rely on
existing VR interaction data
as model input.

[2] Shen, Junxiao, John Dudley, and Per Ola Kristensson. "Simulating realistic human motion trajectories of mid-air gesture typing." IEEE ISMAR 2021.
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[3] Yin, Tairan, et al. "The One-Man-Crowd: Single user generation of crowd motions using virtual reality." IEEE TVCG 2022.



Can desktop interaction data be an alternative

Selected focus: planar stroke gestures

* Why desktop stroke gestures? * Why is it possible to use desktop strokes to generate VR
strokes?
(A) Collection (B) Datasets (C) Commonalities (D.) Addlt_lonal
dimensions
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Easy-to-collect Desktop strokes VR and desktop strokes VR  strokes present
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Research Question

How can desktop strokes enrich VR stroke datasets while
preserving the original characteristics?



Preliminary Studies

Length
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. @©
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%o Total tuning angle
- Commonalities 2 Overall sharpness
Data analysis N , _
Additional dimensions Overall curvature

[1] Huang, Jinmiao, et al. "Gesture-based system for next generation natural and intuitive interfaces." Al EDAM 2019.
[2] Wobbrock, Jacob 0., et al. "Gestures without libraries, toolkits or training: a $1 recognizer for user interface prototypes." ACM UIST 2007.
[3] Tu, Huawei, et al. "A comparative evaluation of finger and pen stroke gestures." ACM CHI 2012.



Preliminary Studies — Findings

e Commonalities

e Distribution shifts

* Between VR and desktop datasets
* Within VR or desktop datasets

* Possible causes

* input environments (i.e., VR or desktop)

* stroke shapes

* drawing speeds

e other unknown factors
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— Challenge 1: It is hard to generalize the models trained on VR strokes to desktop
strokes that comes from unseen distributions (i.e., out-of-distribution).



Preliminary Studies -- Findings

e Additional Dimensions

e 7/ vectors spread out the

entire output space and
overlap between different

stroke types.

Z values
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- Challenge 2: It is hard to capture relationships between commonalities and additional
dimensions from small original VR datasets.
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Proposed Methods

We form U|ate the prOblem Of Stage 1: Learn relationships by training on|VR stroke datasets
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Proposed Methods

To address the first challenge, we further formulate the problem as a conditional
time series generation problem under out-of-distribution circumstances.

— Conditional

domain-invariant generator

techniques [1] to deal with the distribution shifts.

Stage 1: Learn relationships by training on VR stroke datasets
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Stage 2: Apply relationships to desktop stroke
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[1] Wang, Lu, et al. "DIVERSIFY: A General Framework for Time Series Out-of-distribution Detection and Generalization”, IEEE TPAMI 2024
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Proposed Method b EEE W 2024

e Conditional domain-invariant generator
e Characterize latent distributions

0.12 A
o M
."
20 .m:'
2?4
10
g
0 ]
o DO
i
_ °S. §° [ )
10 .‘!‘.:
=20
-30 -20 -10 0 10 20 30 0 0.12
VR rect desktop rect

== VR circle === desktop circle

[1] Wang, Lu, et al. "DIVERSIFY: A General Framework for Time Series Out-of-distribution Detection and Generalization”, IEEE TPAMI 2024 13



Proposed Method

e Conditional domain-invariant generator
* Characterize latent distributions

Group all the VR strokes into several
latent domains, whose distribution gaps
are maximized [1].

X Individual factors (e.g., shapes, speeds)
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[1] Wang, Lu, et al. "DIVERSIFY: A General Framework for Time Series Out-of-distribution Detection and Generalization”, IEEE TPAMI 2024
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Proposed Method

e Conditional domain-invariant generator
* Learn conditional domain-invariant representations

Utilize adversarial learning to fool a
domain discriminator that classifies
domains.

Make the discriminator unable to
differentiate strokes from different
latent domains [1].

[1] Wang, Lu, et al. "DIVERSIFY: A General Framework for Time Series Out-of-distribution Detection and Generalization”, IEEE TPAMI 2024
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Proposed Method

e Conditional domain-invariant generator

* Discretize output space to address the second challenge

e feature extractor classifier
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[1] Wang, Lu, et al. "DIVERSIFY: A General Framework for Time Series Out-of-distribution Detection and Generalization”, IEEE TPAMI 2024



Evaluation

e Comparison with baselines
* Purposes

* assess the generalizability

* examine the influence of training data size on model performance

* Baselines
* conditional time series generative models without integrating out-of-distribution generalization techniques

* Training and testing sets

e drawn from different distributions

FD Hausdorff MMD _linear MMD _rbf MMD _poly
RCGAN 0.021814 0.657808 0.003368 0.006400 0.001685
TimeGAN 0.020063 0.879646 0.008755 0.013145 0.002367
SigCWGAN 0.046372 0.993806 0.015546 0.030862 0.002329
Our Model 0.006323 0.551768 0.000272 0.000799 0.000160
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Evaluation

* Ablation Studies
e Output space discretization
* Loss functions of the generator

Table 2: Abalation studies on output space discretization.

random class labels  z vector cluster labels

FD 0.030495 0.006323

hausdorff 0.667595 0.551768

mmd _linear 0.010434 0.000272

mmd _rbf 0.020506 0.000799

mmd_poly 0.001086 0.000160
(A) standard (B) random class labels for z vectors

IEEE VIR 2024
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Table 3: Abalation studies on the loss functions of the generator G.

Ls(G,D) L12(G) Le+Lio

FD 0.134043 0.013179 0.006323

hausdorff 1.121143 0.559428 0.551768

mmd _linear 0.071677 0.000008 0.000272

mmd_rbf 0.129512 0.001704 0.000799

mmd_poly 0.006074 0.000285 0.000160
(C) Ls(G, D) (D) Lr2(G)
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Applications

* VR stroke prediction with CoSE [1] models

% N7 Ny A, IS
v N X X[/ <
NS )/ &Y K ~
B

A: Trained on 5000 instances of synthesized VR cat sketches

B: Trained on 100 instances of real VR cat sketches

- Our approach can make the prediction task possible with synthesized VR strokes, although
the task is impossible with limited real VR strokes.

- It reduces the burden to collect real VR strokes.
19

[1] Aksan, Emre, et al. “Cose: Compositional stroke embeddings.” NeurIPS 2020.



Applications

* VR stroke classification with different classifiers [1, 2]

Results with deep learning classifiers [1] Results with template-based classifiers [2]
87 |® (r)80+(s) 160 P
o < 8 | )80ri0
800 real VR digits 96.67% g% |o0 o 3 @
a, 85 ' o )
800 real VR digits + 1600 99.63% C g
< 83

synthesized digits

[ J
[ ]
g o
1600 synthesized digits 84.07% $P3 $Q3 $P3+ SF FreehandUni
Stroke classification model

The DL model can achieve satisfactory accuracy Accuracy may decrease when the amount of
with synthesized datasets alone. synthesized data exceeds a threshold.

- The use of generated VR strokes in downstream applications needs to consider the
characteristics of specific algorithms.

[1] Mohammadi, Seyed Saber, et al. "Pointview-gcn: 3d shape classification with multi-view point clouds." IEEE ICIP 2021. 0
[2] Ousmer, Mehdi, et al. "Recognizing 3D trajectories as 2D multi-stroke gestures." ACM ISS 2020.



Take-home messages

* Lessons learned for generating other types of VR interaction data?
e Determining commonalities and additional dimensions.
* Paying attention to distribution shifts.

» Reflections on the use of VR and desktop datasets

* Our method does not require collecting real VR and desktop datasets under
identical conditions thanks to its generalizability.

* A limited real VR dataset that is insufficient for concrete applications might
be adequate for training our generative model.

* The use of generated VR strokes in downstream applications needs to
consider the characteristics of specific algorithms.
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Future work

* From planar VR strokes [1] to non-planar VR strokes [2]

* Propose novel reference frames by adopting
concepts such as gesture task axes [3] or
scaffolds, rather than wusing the traditional «~— gesture articulation

— gesture task axis

Cartesian coordinate system.

e Reconsider the selection of commonalities and /\R .@
additional dimensions.

[1] Arora, Rahul, et al. "Experimental Evaluation of Sketching on Surfaces in VR." ACM CHI 2017
[2] Yu, Xue, et al. "Scaffoldsketch: Accurate industrial design drawing in VR." ACM UIST 2021.

[3] Vatavu, Radu-Daniel, et al. "Relative accuracy measures for stroke gestures." ACM International Conference on Multimodal Interaction 2013. 22



Generating Virtual Reality Stroke Gesture Data from Out-
of-Distribution Desktop Stroke Gesture Data

Contributions:

_ , , D) Additional
*  We explore generating VR stroke gesture data from desktop (A) Collection  (8) Datasets  (C) Commonaliies () CCione
stroke gesture data as an alternative input source that is out- Ny L mane T
f-di . . = O \ § ?;Ig(t::y LTI 2 vectors
of-distribution. { O @ O\; curvature (11T -
* We propose a time series generative network with novel e ——
designs of output space discretization and conditional domain- § PY @ ﬁ 83 gl I !
2 i ength . N/A .
invariant representation learning. Al QQ@ QQ\‘ avare !

*  We develop two applications that show the effectiveness and
usefulness of the datasets enriched by our methods and
demonstrate the potential opportunities opened by our
methods.

. Code and datasets:
https://github.com/yuanlinping /VRStrokeOOD
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https://github.com/yuanlinping/VRStrokeOOD

